Mister Exam

Other calculators

Integral of (3+2(sinx-cosx)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                             
  /                             
 |                              
 |  (3 + 2*(sin(x) - cos(x))) dx
 |                              
/                               
0                               
$$\int\limits_{0}^{1} \left(2 \left(\sin{\left(x \right)} - \cos{\left(x \right)}\right) + 3\right)\, dx$$
Integral(3 + 2*(sin(x) - cos(x)), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Integrate term-by-term:

        1. The integral of sine is negative cosine:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of cosine is sine:

          So, the result is:

        The result is:

      So, the result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                            
 |                                                             
 | (3 + 2*(sin(x) - cos(x))) dx = C - 2*cos(x) - 2*sin(x) + 3*x
 |                                                             
/                                                              
$$\int \left(2 \left(\sin{\left(x \right)} - \cos{\left(x \right)}\right) + 3\right)\, dx = C + 3 x - 2 \sin{\left(x \right)} - 2 \cos{\left(x \right)}$$
The graph
The answer [src]
5 - 2*cos(1) - 2*sin(1)
$$- 2 \sin{\left(1 \right)} - 2 \cos{\left(1 \right)} + 5$$
=
=
5 - 2*cos(1) - 2*sin(1)
$$- 2 \sin{\left(1 \right)} - 2 \cos{\left(1 \right)} + 5$$
5 - 2*cos(1) - 2*sin(1)
Numerical answer [src]
2.23645341864793
2.23645341864793

    Use the examples entering the upper and lower limits of integration.