Integral of 3+tan(5x) dx
The solution
Detail solution
-
Integrate term-by-term:
-
Rewrite the integrand:
tan(5x)=cos(5x)sin(5x)
-
There are multiple ways to do this integral.
Method #1
-
Let u=cos(5x).
Then let du=−5sin(5x)dx and substitute −5du:
∫25u1du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−5u1)du=−5∫u1du
-
The integral of u1 is log(u).
So, the result is: −5log(u)
Now substitute u back in:
−5log(cos(5x))
Method #2
-
Let u=5x.
Then let du=5dx and substitute 5du:
∫25cos(u)sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫5cos(u)sin(u)du=5∫cos(u)sin(u)du
-
Let u=cos(u).
Then let du=−sin(u)du and substitute −du:
∫u1du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u1)du=−∫u1du
-
The integral of u1 is log(u).
So, the result is: −log(u)
Now substitute u back in:
−log(cos(u))
So, the result is: −5log(cos(u))
Now substitute u back in:
−5log(cos(5x))
-
The integral of a constant is the constant times the variable of integration:
∫3dx=3x
The result is: 3x−5log(cos(5x))
-
Add the constant of integration:
3x−5log(cos(5x))+constant
The answer is:
3x−5log(cos(5x))+constant
The answer (Indefinite)
[src]
/
| log(cos(5*x))
| (3 + tan(5*x)) dx = C + 3*x - -------------
| 5
/
5logsec(5x)+3x
The graph
−5logcos5−15
=
Use the examples entering the upper and lower limits of integration.