Mister Exam

Other calculators


3+tan(5x)

Integral of 3+tan(5x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |  (3 + tan(5*x)) dx
 |                   
/                    
0                    
01(tan(5x)+3)dx\int\limits_{0}^{1} \left(\tan{\left(5 x \right)} + 3\right)\, dx
Integral(3 + tan(5*x), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. Rewrite the integrand:

      tan(5x)=sin(5x)cos(5x)\tan{\left(5 x \right)} = \frac{\sin{\left(5 x \right)}}{\cos{\left(5 x \right)}}

    2. There are multiple ways to do this integral.

      Method #1

      1. Let u=cos(5x)u = \cos{\left(5 x \right)}.

        Then let du=5sin(5x)dxdu = - 5 \sin{\left(5 x \right)} dx and substitute du5- \frac{du}{5}:

        125udu\int \frac{1}{25 u}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          (15u)du=1udu5\int \left(- \frac{1}{5 u}\right)\, du = - \frac{\int \frac{1}{u}\, du}{5}

          1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

          So, the result is: log(u)5- \frac{\log{\left(u \right)}}{5}

        Now substitute uu back in:

        log(cos(5x))5- \frac{\log{\left(\cos{\left(5 x \right)} \right)}}{5}

      Method #2

      1. Let u=5xu = 5 x.

        Then let du=5dxdu = 5 dx and substitute du5\frac{du}{5}:

        sin(u)25cos(u)du\int \frac{\sin{\left(u \right)}}{25 \cos{\left(u \right)}}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          sin(u)5cos(u)du=sin(u)cos(u)du5\int \frac{\sin{\left(u \right)}}{5 \cos{\left(u \right)}}\, du = \frac{\int \frac{\sin{\left(u \right)}}{\cos{\left(u \right)}}\, du}{5}

          1. Let u=cos(u)u = \cos{\left(u \right)}.

            Then let du=sin(u)dudu = - \sin{\left(u \right)} du and substitute du- du:

            1udu\int \frac{1}{u}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              (1u)du=1udu\int \left(- \frac{1}{u}\right)\, du = - \int \frac{1}{u}\, du

              1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

              So, the result is: log(u)- \log{\left(u \right)}

            Now substitute uu back in:

            log(cos(u))- \log{\left(\cos{\left(u \right)} \right)}

          So, the result is: log(cos(u))5- \frac{\log{\left(\cos{\left(u \right)} \right)}}{5}

        Now substitute uu back in:

        log(cos(5x))5- \frac{\log{\left(\cos{\left(5 x \right)} \right)}}{5}

    1. The integral of a constant is the constant times the variable of integration:

      3dx=3x\int 3\, dx = 3 x

    The result is: 3xlog(cos(5x))53 x - \frac{\log{\left(\cos{\left(5 x \right)} \right)}}{5}

  2. Add the constant of integration:

    3xlog(cos(5x))5+constant3 x - \frac{\log{\left(\cos{\left(5 x \right)} \right)}}{5}+ \mathrm{constant}


The answer is:

3xlog(cos(5x))5+constant3 x - \frac{\log{\left(\cos{\left(5 x \right)} \right)}}{5}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                           
 |                               log(cos(5*x))
 | (3 + tan(5*x)) dx = C + 3*x - -------------
 |                                     5      
/                                             
logsec(5x)5+3x{{\log \sec \left(5\,x\right)}\over{5}}+3\,x
The graph
0.001.000.100.200.300.400.500.600.700.800.90-1000010000
The answer [src]
nan
logcos5155-{{\log \cos 5-15}\over{5}}
=
=
nan
NaN\text{NaN}
Numerical answer [src]
4.33441279257591
4.33441279257591
The graph
Integral of 3+tan(5x) dx

    Use the examples entering the upper and lower limits of integration.