Mister Exam

Other calculators

Integral of 3+5sinx+3cosx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                             
  /                             
 |                              
 |  (3 + 5*sin(x) + 3*cos(x)) dx
 |                              
/                               
0                               
$$\int\limits_{0}^{1} \left(\left(5 \sin{\left(x \right)} + 3\right) + 3 \cos{\left(x \right)}\right)\, dx$$
Integral(3 + 5*sin(x) + 3*cos(x), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of sine is negative cosine:

        So, the result is:

      1. The integral of a constant is the constant times the variable of integration:

      The result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of cosine is sine:

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                            
 |                                                             
 | (3 + 5*sin(x) + 3*cos(x)) dx = C - 5*cos(x) + 3*x + 3*sin(x)
 |                                                             
/                                                              
$$\int \left(\left(5 \sin{\left(x \right)} + 3\right) + 3 \cos{\left(x \right)}\right)\, dx = C + 3 x + 3 \sin{\left(x \right)} - 5 \cos{\left(x \right)}$$
The graph
The answer [src]
8 - 5*cos(1) + 3*sin(1)
$$- 5 \cos{\left(1 \right)} + 3 \sin{\left(1 \right)} + 8$$
=
=
8 - 5*cos(1) + 3*sin(1)
$$- 5 \cos{\left(1 \right)} + 3 \sin{\left(1 \right)} + 8$$
8 - 5*cos(1) + 3*sin(1)
Numerical answer [src]
7.82290142508299
7.82290142508299

    Use the examples entering the upper and lower limits of integration.