Mister Exam

Other calculators

Integral of 3*x*sin(y)+1 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |  (3*x*sin(y) + 1) dx
 |                     
/                      
0                      
01(3xsin(y)+1)dx\int\limits_{0}^{1} \left(3 x \sin{\left(y \right)} + 1\right)\, dx
Integral((3*x)*sin(y) + 1, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      3xsin(y)dx=sin(y)3xdx\int 3 x \sin{\left(y \right)}\, dx = \sin{\left(y \right)} \int 3 x\, dx

      1. The integral of a constant times a function is the constant times the integral of the function:

        3xdx=3xdx\int 3 x\, dx = 3 \int x\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          xdx=x22\int x\, dx = \frac{x^{2}}{2}

        So, the result is: 3x22\frac{3 x^{2}}{2}

      So, the result is: 3x2sin(y)2\frac{3 x^{2} \sin{\left(y \right)}}{2}

    1. The integral of a constant is the constant times the variable of integration:

      1dx=x\int 1\, dx = x

    The result is: 3x2sin(y)2+x\frac{3 x^{2} \sin{\left(y \right)}}{2} + x

  2. Now simplify:

    x(3xsin(y)+2)2\frac{x \left(3 x \sin{\left(y \right)} + 2\right)}{2}

  3. Add the constant of integration:

    x(3xsin(y)+2)2+constant\frac{x \left(3 x \sin{\left(y \right)} + 2\right)}{2}+ \mathrm{constant}


The answer is:

x(3xsin(y)+2)2+constant\frac{x \left(3 x \sin{\left(y \right)} + 2\right)}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                 2       
 |                               3*x *sin(y)
 | (3*x*sin(y) + 1) dx = C + x + -----------
 |                                    2     
/                                           
(3xsin(y)+1)dx=C+3x2sin(y)2+x\int \left(3 x \sin{\left(y \right)} + 1\right)\, dx = C + \frac{3 x^{2} \sin{\left(y \right)}}{2} + x
The answer [src]
    3*sin(y)
1 + --------
       2    
3sin(y)2+1\frac{3 \sin{\left(y \right)}}{2} + 1
=
=
    3*sin(y)
1 + --------
       2    
3sin(y)2+1\frac{3 \sin{\left(y \right)}}{2} + 1
1 + 3*sin(y)/2

    Use the examples entering the upper and lower limits of integration.