Mister Exam

Other calculators

Integral of 3-2x-x^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    ___                 
  \/ 2                  
    /                   
   |                    
   |   /           2\   
   |   \3 - 2*x - x / dx
   |                    
  /                     
   ___                  
-\/ 2                   
$$\int\limits_{- \sqrt{2}}^{\sqrt{2}} \left(- x^{2} + \left(3 - 2 x\right)\right)\, dx$$
Integral(3 - 2*x - x^2, (x, -sqrt(2), sqrt(2)))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. Integrate term-by-term:

      1. The integral of a constant is the constant times the variable of integration:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      The result is:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                     
 |                                     3
 | /           2\           2         x 
 | \3 - 2*x - x / dx = C - x  + 3*x - --
 |                                    3 
/                                       
$$\int \left(- x^{2} + \left(3 - 2 x\right)\right)\, dx = C - \frac{x^{3}}{3} - x^{2} + 3 x$$
The graph
The answer [src]
     ___
14*\/ 2 
--------
   3    
$$\frac{14 \sqrt{2}}{3}$$
=
=
     ___
14*\/ 2 
--------
   3    
$$\frac{14 \sqrt{2}}{3}$$
14*sqrt(2)/3
Numerical answer [src]
6.59966329107444
6.59966329107444

    Use the examples entering the upper and lower limits of integration.