Mister Exam

Other calculators

Integral of (3-2x)⁴dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |           4   
 |  (3 - 2*x)  dx
 |               
/                
0                
01(32x)4dx\int\limits_{0}^{1} \left(3 - 2 x\right)^{4}\, dx
Integral((3 - 2*x)^4, (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=32xu = 3 - 2 x.

      Then let du=2dxdu = - 2 dx and substitute du2- \frac{du}{2}:

      (u42)du\int \left(- \frac{u^{4}}{2}\right)\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        u4du=u4du2\int u^{4}\, du = - \frac{\int u^{4}\, du}{2}

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

        So, the result is: u510- \frac{u^{5}}{10}

      Now substitute uu back in:

      (32x)510- \frac{\left(3 - 2 x\right)^{5}}{10}

    Method #2

    1. Rewrite the integrand:

      (32x)4=16x496x3+216x2216x+81\left(3 - 2 x\right)^{4} = 16 x^{4} - 96 x^{3} + 216 x^{2} - 216 x + 81

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        16x4dx=16x4dx\int 16 x^{4}\, dx = 16 \int x^{4}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x4dx=x55\int x^{4}\, dx = \frac{x^{5}}{5}

        So, the result is: 16x55\frac{16 x^{5}}{5}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (96x3)dx=96x3dx\int \left(- 96 x^{3}\right)\, dx = - 96 \int x^{3}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x3dx=x44\int x^{3}\, dx = \frac{x^{4}}{4}

        So, the result is: 24x4- 24 x^{4}

      1. The integral of a constant times a function is the constant times the integral of the function:

        216x2dx=216x2dx\int 216 x^{2}\, dx = 216 \int x^{2}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

        So, the result is: 72x372 x^{3}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (216x)dx=216xdx\int \left(- 216 x\right)\, dx = - 216 \int x\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          xdx=x22\int x\, dx = \frac{x^{2}}{2}

        So, the result is: 108x2- 108 x^{2}

      1. The integral of a constant is the constant times the variable of integration:

        81dx=81x\int 81\, dx = 81 x

      The result is: 16x5524x4+72x3108x2+81x\frac{16 x^{5}}{5} - 24 x^{4} + 72 x^{3} - 108 x^{2} + 81 x

  2. Now simplify:

    (2x3)510\frac{\left(2 x - 3\right)^{5}}{10}

  3. Add the constant of integration:

    (2x3)510+constant\frac{\left(2 x - 3\right)^{5}}{10}+ \mathrm{constant}


The answer is:

(2x3)510+constant\frac{\left(2 x - 3\right)^{5}}{10}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                              
 |                              5
 |          4          (3 - 2*x) 
 | (3 - 2*x)  dx = C - ----------
 |                         10    
/                                
(32x)4dx=C(32x)510\int \left(3 - 2 x\right)^{4}\, dx = C - \frac{\left(3 - 2 x\right)^{5}}{10}
The graph
0.001.000.100.200.300.400.500.600.700.800.900100
The answer [src]
121/5
1215\frac{121}{5}
=
=
121/5
1215\frac{121}{5}
121/5
Numerical answer [src]
24.2
24.2

    Use the examples entering the upper and lower limits of integration.