Mister Exam

Other calculators

Integral of (3/sqrt(x)+1/x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |  /  3     1 \   
 |  |----- + --| dx
 |  |  ___    2|   
 |  \\/ x    x /   
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \left(\frac{1}{x^{2}} + \frac{3}{\sqrt{x}}\right)\, dx$$
Integral(3/sqrt(x) + 1/(x^2), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

      PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=1, c=0, context=1/(x**2), symbol=x), False), (ArccothRule(a=1, b=1, c=0, context=1/(x**2), symbol=x), False), (ArctanhRule(a=1, b=1, c=0, context=1/(x**2), symbol=x), False)], context=1/(x**2), symbol=x)

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of a constant is the constant times the variable of integration:

          So, the result is:

        Now substitute back in:

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                     
 |                      
 | /  3     1 \         
 | |----- + --| dx = nan
 | |  ___    2|         
 | \\/ x    x /         
 |                      
/                       
$$\int \left(\frac{1}{x^{2}} + \frac{3}{\sqrt{x}}\right)\, dx = \text{NaN}$$
The graph
The answer [src]
oo
$$\infty$$
=
=
oo
$$\infty$$
oo
Numerical answer [src]
1.3793236779486e+19
1.3793236779486e+19

    Use the examples entering the upper and lower limits of integration.