Mister Exam

Other calculators


13*e^x

Integral of 13*e^x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1         
  /         
 |          
 |      x   
 |  13*e  dx
 |          
/           
0           
0113exdx\int\limits_{0}^{1} 13 e^{x}\, dx
Integral(13*E^x, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    13exdx=13exdx\int 13 e^{x}\, dx = 13 \int e^{x}\, dx

    1. The integral of the exponential function is itself.

      exdx=ex\int e^{x}\, dx = e^{x}

    So, the result is: 13ex13 e^{x}

  2. Add the constant of integration:

    13ex+constant13 e^{x}+ \mathrm{constant}


The answer is:

13ex+constant13 e^{x}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                    
 |                     
 |     x              x
 | 13*e  dx = C + 13*e 
 |                     
/                      
13ex13\,e^{x}
The graph
0.001.000.100.200.300.400.500.600.700.800.90050
The answer [src]
-13 + 13*e
13(e1)13\,\left(e-1\right)
=
=
-13 + 13*e
13+13e-13 + 13 e
Numerical answer [src]
22.3376637699676
22.3376637699676
The graph
Integral of 13*e^x dx

    Use the examples entering the upper and lower limits of integration.