Mister Exam

Other calculators

Integral of tgx/(1+(tgx)+tg^2(x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                        
 --                        
 4                         
  /                        
 |                         
 |         tan(x)          
 |  -------------------- dx
 |                  2      
 |  1 + tan(x) + tan (x)   
 |                         
/                          
0                          
$$\int\limits_{0}^{\frac{\pi}{4}} \frac{\tan{\left(x \right)}}{\left(\tan{\left(x \right)} + 1\right) + \tan^{2}{\left(x \right)}}\, dx$$
Integral(tan(x)/(1 + tan(x) + tan(x)^2), (x, 0, pi/4))
The answer (Indefinite) [src]
                                             /        /    pi\                               \
                                             |        |x - --|       /  ___       ___       \|
  /                                      ___ |        |    2 |       |\/ 3    2*\/ 3 *tan(x)||
 |                                   2*\/ 3 *|pi*floor|------| + atan|----- + --------------||
 |        tan(x)                             \        \  pi  /       \  3           3       //
 | -------------------- dx = C + x - ---------------------------------------------------------
 |                 2                                             3                            
 | 1 + tan(x) + tan (x)                                                                       
 |                                                                                            
/                                                                                             
$$\int \frac{\tan{\left(x \right)}}{\left(\tan{\left(x \right)} + 1\right) + \tan^{2}{\left(x \right)}}\, dx = C + x - \frac{2 \sqrt{3} \left(\operatorname{atan}{\left(\frac{2 \sqrt{3} \tan{\left(x \right)}}{3} + \frac{\sqrt{3}}{3} \right)} + \pi \left\lfloor{\frac{x - \frac{\pi}{2}}{\pi}}\right\rfloor\right)}{3}$$
The graph
The answer [src]
          ___
pi   pi*\/ 3 
-- - --------
4       9    
$$- \frac{\sqrt{3} \pi}{9} + \frac{\pi}{4}$$
=
=
          ___
pi   pi*\/ 3 
-- - --------
4       9    
$$- \frac{\sqrt{3} \pi}{9} + \frac{\pi}{4}$$
pi/4 - pi*sqrt(3)/9
Numerical answer [src]
0.180798375319376
0.180798375319376

    Use the examples entering the upper and lower limits of integration.