Mister Exam

Other calculators

Integral of (tg(y))*(ln(cos(y))^(-1)) dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |     tan(y)     
 |  ----------- dy
 |  log(cos(y))   
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{\tan{\left(y \right)}}{\log{\left(\cos{\left(y \right)} \right)}}\, dy$$
Integral(tan(y)/log(cos(y)), (y, 0, 1))
The answer (Indefinite) [src]
  /                       /              
 |                       |               
 |    tan(y)             |    tan(y)     
 | ----------- dy = C +  | ----------- dy
 | log(cos(y))           | log(cos(y))   
 |                       |               
/                       /                
$$\int \frac{\tan{\left(y \right)}}{\log{\left(\cos{\left(y \right)} \right)}}\, dy = C + \int \frac{\tan{\left(y \right)}}{\log{\left(\cos{\left(y \right)} \right)}}\, dy$$
The answer [src]
  1               
  /               
 |                
 |     tan(y)     
 |  ----------- dy
 |  log(cos(y))   
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{\tan{\left(y \right)}}{\log{\left(\cos{\left(y \right)} \right)}}\, dy$$
=
=
  1               
  /               
 |                
 |     tan(y)     
 |  ----------- dy
 |  log(cos(y))   
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{\tan{\left(y \right)}}{\log{\left(\cos{\left(y \right)} \right)}}\, dy$$
Integral(tan(y)/log(cos(y)), (y, 0, 1))

    Use the examples entering the upper and lower limits of integration.