Integral of tg^3(x/3) dx
The solution
Detail solution
-
Rewrite the integrand:
tan3(3x)=(sec2(3x)−1)tan(3x)
-
There are multiple ways to do this integral.
Method #1
-
Let u=sec2(3x).
Then let du=32tan(3x)sec2(3x)dx and substitute 2du:
∫4u3u−3du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2u3u−3du=2∫u3u−3du
-
Let u=3u.
Then let du=3du and substitute du:
∫uu−3du
-
Rewrite the integrand:
uu−3=1−u3
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫1du=u
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u3)du=−3∫u1du
-
The integral of u1 is log(u).
So, the result is: −3log(u)
The result is: u−3log(u)
Now substitute u back in:
3u−3log(3u)
So, the result is: 23u−23log(3u)
Now substitute u back in:
−23log(3sec2(3x))+23sec2(3x)
Method #2
-
Rewrite the integrand:
(sec2(3x)−1)tan(3x)=tan(3x)sec2(3x)−tan(3x)
-
Integrate term-by-term:
-
Let u=sec2(3x).
Then let du=32tan(3x)sec2(3x)dx and substitute 23du:
∫49du
-
The integral of a constant times a function is the constant times the integral of the function:
∫23du=23∫1du
-
The integral of a constant is the constant times the variable of integration:
∫1du=u
So, the result is: 23u
Now substitute u back in:
23sec2(3x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−tan(3x))dx=−∫tan(3x)dx
-
Rewrite the integrand:
tan(3x)=cos(3x)sin(3x)
-
Let u=cos(3x).
Then let du=−3sin(3x)dx and substitute −3du:
∫u9du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u3)du=−3∫u1du
-
The integral of u1 is log(u).
So, the result is: −3log(u)
Now substitute u back in:
−3log(cos(3x))
So, the result is: 3log(cos(3x))
The result is: 3log(cos(3x))+23sec2(3x)
Method #3
-
Rewrite the integrand:
(sec2(3x)−1)tan(3x)=tan(3x)sec2(3x)−tan(3x)
-
Integrate term-by-term:
-
Let u=sec2(3x).
Then let du=32tan(3x)sec2(3x)dx and substitute 23du:
∫49du
-
The integral of a constant times a function is the constant times the integral of the function:
∫23du=23∫1du
-
The integral of a constant is the constant times the variable of integration:
∫1du=u
So, the result is: 23u
Now substitute u back in:
23sec2(3x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−tan(3x))dx=−∫tan(3x)dx
-
Rewrite the integrand:
tan(3x)=cos(3x)sin(3x)
-
Let u=cos(3x).
Then let du=−3sin(3x)dx and substitute −3du:
∫u9du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u3)du=−3∫u1du
-
The integral of u1 is log(u).
So, the result is: −3log(u)
Now substitute u back in:
−3log(cos(3x))
So, the result is: 3log(cos(3x))
The result is: 3log(cos(3x))+23sec2(3x)
-
Add the constant of integration:
−23log(3sec2(3x))+23sec2(3x)+constant
The answer is:
−23log(3sec2(3x))+23sec2(3x)+constant
The answer (Indefinite)
[src]
/ / 2/x\\ 2/x\
| 3*log|3*sec |-|| 3*sec |-|
| 3/x\ \ \3// \3/
| tan |-| dx = C - ---------------- + ---------
| \3/ 2 2
|
/
3(2log(sin2(3x)−1)−2sin2(3x)−21)
The graph
3 3
- - + 3*log(cos(1/3)) + -----------
2 2
2*cos (1/3)
3(2log(1−sin2(31))−2sin2(31)−21−21)
=
3 3
- - + 3*log(cos(1/3)) + -----------
2 2
2*cos (1/3)
−23+3log(cos(31))+2cos2(31)3
Use the examples entering the upper and lower limits of integration.