Mister Exam

Other calculators


tg^3(x/3)

Integral of tg^3(x/3) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |     3/x\   
 |  tan |-| dx
 |      \3/   
 |            
/             
0             
01tan3(x3)dx\int\limits_{0}^{1} \tan^{3}{\left(\frac{x}{3} \right)}\, dx
Integral(tan(x/3)^3, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    tan3(x3)=(sec2(x3)1)tan(x3)\tan^{3}{\left(\frac{x}{3} \right)} = \left(\sec^{2}{\left(\frac{x}{3} \right)} - 1\right) \tan{\left(\frac{x}{3} \right)}

  2. There are multiple ways to do this integral.

    Method #1

    1. Let u=sec2(x3)u = \sec^{2}{\left(\frac{x}{3} \right)}.

      Then let du=2tan(x3)sec2(x3)dx3du = \frac{2 \tan{\left(\frac{x}{3} \right)} \sec^{2}{\left(\frac{x}{3} \right)} dx}{3} and substitute du2\frac{du}{2}:

      3u34udu\int \frac{3 u - 3}{4 u}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        3u32udu=3u3udu2\int \frac{3 u - 3}{2 u}\, du = \frac{\int \frac{3 u - 3}{u}\, du}{2}

        1. Let u=3uu = 3 u.

          Then let du=3dudu = 3 du and substitute dudu:

          u3udu\int \frac{u - 3}{u}\, du

          1. Rewrite the integrand:

            u3u=13u\frac{u - 3}{u} = 1 - \frac{3}{u}

          2. Integrate term-by-term:

            1. The integral of a constant is the constant times the variable of integration:

              1du=u\int 1\, du = u

            1. The integral of a constant times a function is the constant times the integral of the function:

              (3u)du=31udu\int \left(- \frac{3}{u}\right)\, du = - 3 \int \frac{1}{u}\, du

              1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

              So, the result is: 3log(u)- 3 \log{\left(u \right)}

            The result is: u3log(u)u - 3 \log{\left(u \right)}

          Now substitute uu back in:

          3u3log(3u)3 u - 3 \log{\left(3 u \right)}

        So, the result is: 3u23log(3u)2\frac{3 u}{2} - \frac{3 \log{\left(3 u \right)}}{2}

      Now substitute uu back in:

      3log(3sec2(x3))2+3sec2(x3)2- \frac{3 \log{\left(3 \sec^{2}{\left(\frac{x}{3} \right)} \right)}}{2} + \frac{3 \sec^{2}{\left(\frac{x}{3} \right)}}{2}

    Method #2

    1. Rewrite the integrand:

      (sec2(x3)1)tan(x3)=tan(x3)sec2(x3)tan(x3)\left(\sec^{2}{\left(\frac{x}{3} \right)} - 1\right) \tan{\left(\frac{x}{3} \right)} = \tan{\left(\frac{x}{3} \right)} \sec^{2}{\left(\frac{x}{3} \right)} - \tan{\left(\frac{x}{3} \right)}

    2. Integrate term-by-term:

      1. Let u=sec2(x3)u = \sec^{2}{\left(\frac{x}{3} \right)}.

        Then let du=2tan(x3)sec2(x3)dx3du = \frac{2 \tan{\left(\frac{x}{3} \right)} \sec^{2}{\left(\frac{x}{3} \right)} dx}{3} and substitute 3du2\frac{3 du}{2}:

        94du\int \frac{9}{4}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          32du=31du2\int \frac{3}{2}\, du = \frac{3 \int 1\, du}{2}

          1. The integral of a constant is the constant times the variable of integration:

            1du=u\int 1\, du = u

          So, the result is: 3u2\frac{3 u}{2}

        Now substitute uu back in:

        3sec2(x3)2\frac{3 \sec^{2}{\left(\frac{x}{3} \right)}}{2}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (tan(x3))dx=tan(x3)dx\int \left(- \tan{\left(\frac{x}{3} \right)}\right)\, dx = - \int \tan{\left(\frac{x}{3} \right)}\, dx

        1. Rewrite the integrand:

          tan(x3)=sin(x3)cos(x3)\tan{\left(\frac{x}{3} \right)} = \frac{\sin{\left(\frac{x}{3} \right)}}{\cos{\left(\frac{x}{3} \right)}}

        2. Let u=cos(x3)u = \cos{\left(\frac{x}{3} \right)}.

          Then let du=sin(x3)dx3du = - \frac{\sin{\left(\frac{x}{3} \right)} dx}{3} and substitute 3du- 3 du:

          9udu\int \frac{9}{u}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            (3u)du=31udu\int \left(- \frac{3}{u}\right)\, du = - 3 \int \frac{1}{u}\, du

            1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

            So, the result is: 3log(u)- 3 \log{\left(u \right)}

          Now substitute uu back in:

          3log(cos(x3))- 3 \log{\left(\cos{\left(\frac{x}{3} \right)} \right)}

        So, the result is: 3log(cos(x3))3 \log{\left(\cos{\left(\frac{x}{3} \right)} \right)}

      The result is: 3log(cos(x3))+3sec2(x3)23 \log{\left(\cos{\left(\frac{x}{3} \right)} \right)} + \frac{3 \sec^{2}{\left(\frac{x}{3} \right)}}{2}

    Method #3

    1. Rewrite the integrand:

      (sec2(x3)1)tan(x3)=tan(x3)sec2(x3)tan(x3)\left(\sec^{2}{\left(\frac{x}{3} \right)} - 1\right) \tan{\left(\frac{x}{3} \right)} = \tan{\left(\frac{x}{3} \right)} \sec^{2}{\left(\frac{x}{3} \right)} - \tan{\left(\frac{x}{3} \right)}

    2. Integrate term-by-term:

      1. Let u=sec2(x3)u = \sec^{2}{\left(\frac{x}{3} \right)}.

        Then let du=2tan(x3)sec2(x3)dx3du = \frac{2 \tan{\left(\frac{x}{3} \right)} \sec^{2}{\left(\frac{x}{3} \right)} dx}{3} and substitute 3du2\frac{3 du}{2}:

        94du\int \frac{9}{4}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          32du=31du2\int \frac{3}{2}\, du = \frac{3 \int 1\, du}{2}

          1. The integral of a constant is the constant times the variable of integration:

            1du=u\int 1\, du = u

          So, the result is: 3u2\frac{3 u}{2}

        Now substitute uu back in:

        3sec2(x3)2\frac{3 \sec^{2}{\left(\frac{x}{3} \right)}}{2}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (tan(x3))dx=tan(x3)dx\int \left(- \tan{\left(\frac{x}{3} \right)}\right)\, dx = - \int \tan{\left(\frac{x}{3} \right)}\, dx

        1. Rewrite the integrand:

          tan(x3)=sin(x3)cos(x3)\tan{\left(\frac{x}{3} \right)} = \frac{\sin{\left(\frac{x}{3} \right)}}{\cos{\left(\frac{x}{3} \right)}}

        2. Let u=cos(x3)u = \cos{\left(\frac{x}{3} \right)}.

          Then let du=sin(x3)dx3du = - \frac{\sin{\left(\frac{x}{3} \right)} dx}{3} and substitute 3du- 3 du:

          9udu\int \frac{9}{u}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            (3u)du=31udu\int \left(- \frac{3}{u}\right)\, du = - 3 \int \frac{1}{u}\, du

            1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

            So, the result is: 3log(u)- 3 \log{\left(u \right)}

          Now substitute uu back in:

          3log(cos(x3))- 3 \log{\left(\cos{\left(\frac{x}{3} \right)} \right)}

        So, the result is: 3log(cos(x3))3 \log{\left(\cos{\left(\frac{x}{3} \right)} \right)}

      The result is: 3log(cos(x3))+3sec2(x3)23 \log{\left(\cos{\left(\frac{x}{3} \right)} \right)} + \frac{3 \sec^{2}{\left(\frac{x}{3} \right)}}{2}

  3. Add the constant of integration:

    3log(3sec2(x3))2+3sec2(x3)2+constant- \frac{3 \log{\left(3 \sec^{2}{\left(\frac{x}{3} \right)} \right)}}{2} + \frac{3 \sec^{2}{\left(\frac{x}{3} \right)}}{2}+ \mathrm{constant}


The answer is:

3log(3sec2(x3))2+3sec2(x3)2+constant- \frac{3 \log{\left(3 \sec^{2}{\left(\frac{x}{3} \right)} \right)}}{2} + \frac{3 \sec^{2}{\left(\frac{x}{3} \right)}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                      /     2/x\\        2/x\
 |                  3*log|3*sec |-||   3*sec |-|
 |    3/x\               \      \3//         \3/
 | tan |-| dx = C - ---------------- + ---------
 |     \3/                 2               2    
 |                                              
/                                               
3(log(sin2(x3)1)212sin2(x3)2)3\,\left({{\log \left(\sin ^2\left({{x}\over{3}}\right)-1\right) }\over{2}}-{{1}\over{2\,\sin ^2\left({{x}\over{3}}\right)-2}}\right)
The graph
0.001.000.100.200.300.400.500.600.700.800.9002
The answer [src]
  3                          3     
- - + 3*log(cos(1/3)) + -----------
  2                          2     
                        2*cos (1/3)
3(log(1sin2(13))212sin2(13)212)3\,\left({{\log \left(1-\sin ^2\left({{1}\over{3}}\right)\right) }\over{2}}-{{1}\over{2\,\sin ^2\left({{1}\over{3}}\right)-2}}-{{1 }\over{2}}\right)
=
=
  3                          3     
- - + 3*log(cos(1/3)) + -----------
  2                          2     
                        2*cos (1/3)
32+3log(cos(13))+32cos2(13)- \frac{3}{2} + 3 \log{\left(\cos{\left(\frac{1}{3} \right)} \right)} + \frac{3}{2 \cos^{2}{\left(\frac{1}{3} \right)}}
Numerical answer [src]
0.00998954487832324
0.00998954487832324
The graph
Integral of tg^3(x/3) dx

    Use the examples entering the upper and lower limits of integration.