1 / | | 5 | tan (x) | ------- dx | 2 | cos (x) | / 0
Integral(tan(x)^5/cos(x)^2, (x, 0, 1))
Rewrite the integrand:
There are multiple ways to do this integral.
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
Rewrite the integrand:
Integrate term-by-term:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
So, the result is:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
The result is:
Rewrite the integrand:
Integrate term-by-term:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
So, the result is:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
The result is:
Now simplify:
Add the constant of integration:
The answer is:
/ | 3 | 5 / 2 \ | tan (x) \-1 + sec (x)/ | ------- dx = C + --------------- | 2 6 | cos (x) | /
2 4
1 1 - 3*cos (1) + 3*cos (1)
- - + -------------------------
6 6
6*cos (1)
=
2 4
1 1 - 3*cos (1) + 3*cos (1)
- - + -------------------------
6 6
6*cos (1)
-1/6 + (1 - 3*cos(1)^2 + 3*cos(1)^4)/(6*cos(1)^6)
Use the examples entering the upper and lower limits of integration.