Mister Exam

Other calculators


tg^5x/cos^2x

Integral of tg^5x/cos^2x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |     5      
 |  tan (x)   
 |  ------- dx
 |     2      
 |  cos (x)   
 |            
/             
0             
$$\int\limits_{0}^{1} \frac{\tan^{5}{\left(x \right)}}{\cos^{2}{\left(x \right)}}\, dx$$
Integral(tan(x)^5/cos(x)^2, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

      The result is:

    Method #3

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

      The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                
 |                                3
 |    5             /        2   \ 
 | tan (x)          \-1 + sec (x)/ 
 | ------- dx = C + ---------------
 |    2                    6       
 | cos (x)                         
 |                                 
/                                  
$$\int \frac{\tan^{5}{\left(x \right)}}{\cos^{2}{\left(x \right)}}\, dx = C + \frac{\left(\sec^{2}{\left(x \right)} - 1\right)^{3}}{6}$$
The graph
The answer [src]
               2           4   
  1   1 - 3*cos (1) + 3*cos (1)
- - + -------------------------
  6                6           
              6*cos (1)        
$$- \frac{1}{6} + \frac{- 3 \cos^{2}{\left(1 \right)} + 3 \cos^{4}{\left(1 \right)} + 1}{6 \cos^{6}{\left(1 \right)}}$$
=
=
               2           4   
  1   1 - 3*cos (1) + 3*cos (1)
- - + -------------------------
  6                6           
              6*cos (1)        
$$- \frac{1}{6} + \frac{- 3 \cos^{2}{\left(1 \right)} + 3 \cos^{4}{\left(1 \right)} + 1}{6 \cos^{6}{\left(1 \right)}}$$
-1/6 + (1 - 3*cos(1)^2 + 3*cos(1)^4)/(6*cos(1)^6)
Numerical answer [src]
2.37827842589157
2.37827842589157
The graph
Integral of tg^5x/cos^2x dx

    Use the examples entering the upper and lower limits of integration.