Mister Exam

Other calculators

Integral of (tg^2x+sinx)/cos^2x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |     2               
 |  tan (x) + sin(x)   
 |  ---------------- dx
 |         2           
 |      cos (x)        
 |                     
/                      
0                      
$$\int\limits_{0}^{1} \frac{\sin{\left(x \right)} + \tan^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}}\, dx$$
Integral((tan(x)^2 + sin(x))/cos(x)^2, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      Now substitute back in:

    1. Don't know the steps in finding this integral.

      But the integral is

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                       
 |                                                        
 |    2                                                   
 | tan (x) + sin(x)            1       sin(x)      sin(x) 
 | ---------------- dx = C + ------ - -------- + ---------
 |        2                  cos(x)   3*cos(x)        3   
 |     cos (x)                                   3*cos (x)
 |                                                        
/                                                         
$$\int \frac{\sin{\left(x \right)} + \tan^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}}\, dx = C - \frac{\sin{\left(x \right)}}{3 \cos{\left(x \right)}} + \frac{\sin{\left(x \right)}}{3 \cos^{3}{\left(x \right)}} + \frac{1}{\cos{\left(x \right)}}$$
The graph
The answer [src]
       1       sin(1)      sin(1) 
-1 + ------ - -------- + ---------
     cos(1)   3*cos(1)        3   
                         3*cos (1)
$$-1 - \frac{\sin{\left(1 \right)}}{3 \cos{\left(1 \right)}} + \frac{\sin{\left(1 \right)}}{3 \cos^{3}{\left(1 \right)}} + \frac{1}{\cos{\left(1 \right)}}$$
=
=
       1       sin(1)      sin(1) 
-1 + ------ - -------- + ---------
     cos(1)   3*cos(1)        3   
                         3*cos (1)
$$-1 - \frac{\sin{\left(1 \right)}}{3 \cos{\left(1 \right)}} + \frac{\sin{\left(1 \right)}}{3 \cos^{3}{\left(1 \right)}} + \frac{1}{\cos{\left(1 \right)}}$$
-1 + 1/cos(1) - sin(1)/(3*cos(1)) + sin(1)/(3*cos(1)^3)
Numerical answer [src]
2.10998963362518
2.10998963362518

    Use the examples entering the upper and lower limits of integration.