Mister Exam

Other calculators

Integral of tg(pi/2^x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |     /pi\   
 |  tan|--| dx
 |     | x|   
 |     \2 /   
 |            
/             
0             
$$\int\limits_{0}^{1} \tan{\left(\frac{\pi}{2^{x}} \right)}\, dx$$
Integral(tan(pi/2^x), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Don't know the steps in finding this integral.

    But the integral is

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
                      /              
  /                  |               
 |                   |    /    -x\   
 |    /pi\           | sin\pi*2  /   
 | tan|--| dx = C +  | ----------- dx
 |    | x|           |    /    -x\   
 |    \2 /           | cos\pi*2  /   
 |                   |               
/                   /                
$$\int \tan{\left(\frac{\pi}{2^{x}} \right)}\, dx = C + \int \frac{\sin{\left(2^{- x} \pi \right)}}{\cos{\left(2^{- x} \pi \right)}}\, dx$$
The answer [src]
  1               
  /               
 |                
 |     /    -x\   
 |  tan\pi*2  / dx
 |                
/                 
0                 
$$\int\limits_{0}^{1} \tan{\left(2^{- x} \pi \right)}\, dx$$
=
=
  1               
  /               
 |                
 |     /    -x\   
 |  tan\pi*2  / dx
 |                
/                 
0                 
$$\int\limits_{0}^{1} \tan{\left(2^{- x} \pi \right)}\, dx$$
Integral(tan(pi*2^(-x)), (x, 0, 1))
Numerical answer [src]
-39.9417060256515
-39.9417060256515

    Use the examples entering the upper and lower limits of integration.