Integral of (tan(x))^0.5 dx
The solution
The answer (Indefinite)
[src]
$$2\,\left(-{{\log \left(\tan x+\sqrt{2}\,\sqrt{\tan x}+1\right)
}\over{2^{{{5}\over{2}}}}}+{{\log \left(\tan x-\sqrt{2}\,\sqrt{\tan
x}+1\right)}\over{2^{{{5}\over{2}}}}}+{{\arctan \left({{2\,\sqrt{
\tan x}+\sqrt{2}}\over{\sqrt{2}}}\right)}\over{2^{{{3}\over{2}}}}}+
{{\arctan \left({{2\,\sqrt{\tan x}-\sqrt{2}}\over{\sqrt{2}}}\right)
}\over{2^{{{3}\over{2}}}}}\right)$$
1
/
|
| ________
| \/ tan(x) dx
|
/
0
$$\int\limits_{0}^{1} \sqrt{\tan{\left(x \right)}}\, dx$$
=
1
/
|
| ________
| \/ tan(x) dx
|
/
0
$$\int\limits_{0}^{1} \sqrt{\tan{\left(x \right)}}\, dx$$
Use the examples entering the upper and lower limits of integration.