Mister Exam

Integral of tan(x+c)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |  tan(x + c) dx
 |               
/                
0                
$$\int\limits_{0}^{1} \tan{\left(c + x \right)}\, dx$$
Integral(tan(x + c), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is .

        So, the result is:

      Now substitute back in:

    Method #2

    1. Let .

      Then let and substitute :

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is .

          So, the result is:

        Now substitute back in:

      Now substitute back in:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                   
 |                                    
 | tan(x + c) dx = C - log(cos(x + c))
 |                                    
/                                     
$$\int \tan{\left(c + x \right)}\, dx = C - \log{\left(\cos{\left(c + x \right)} \right)}$$
The answer [src]
   /       2       \      /       2   \
log\1 + tan (1 + c)/   log\1 + tan (c)/
-------------------- - ----------------
         2                    2        
$$- \frac{\log{\left(\tan^{2}{\left(c \right)} + 1 \right)}}{2} + \frac{\log{\left(\tan^{2}{\left(c + 1 \right)} + 1 \right)}}{2}$$
=
=
   /       2       \      /       2   \
log\1 + tan (1 + c)/   log\1 + tan (c)/
-------------------- - ----------------
         2                    2        
$$- \frac{\log{\left(\tan^{2}{\left(c \right)} + 1 \right)}}{2} + \frac{\log{\left(\tan^{2}{\left(c + 1 \right)} + 1 \right)}}{2}$$
log(1 + tan(1 + c)^2)/2 - log(1 + tan(c)^2)/2

    Use the examples entering the upper and lower limits of integration.