Mister Exam

Integral of tanx/cosx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |  tan(x)   
 |  ------ dx
 |  cos(x)   
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{\tan{\left(x \right)}}{\cos{\left(x \right)}}\, dx$$
Integral(tan(x)/cos(x), (x, 0, 1))
The answer (Indefinite) [src]
  /                      
 |                       
 | tan(x)            1   
 | ------ dx = C + ------
 | cos(x)          cos(x)
 |                       
/                        
$$\int \frac{\tan{\left(x \right)}}{\cos{\left(x \right)}}\, dx = C + \frac{1}{\cos{\left(x \right)}}$$
The graph
The answer [src]
       1   
-1 + ------
     cos(1)
$$-1 + \frac{1}{\cos{\left(1 \right)}}$$
=
=
       1   
-1 + ------
     cos(1)
$$-1 + \frac{1}{\cos{\left(1 \right)}}$$
-1 + 1/cos(1)
Numerical answer [src]
0.850815717680926
0.850815717680926
The graph
Integral of tanx/cosx dx

    Use the examples entering the upper and lower limits of integration.