Mister Exam

Other calculators


tan^2xsec^2x

Integral of tan^2xsec^2x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |     2       2      
 |  tan (x)*sec (x) dx
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \tan^{2}{\left(x \right)} \sec^{2}{\left(x \right)}\, dx$$
Integral(tan(x)^2*sec(x)^2, (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of is when :

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                
 |                             3   
 |    2       2             tan (x)
 | tan (x)*sec (x) dx = C + -------
 |                             3   
/                                  
$${{\tan ^3x}\over{3}}$$
The graph
The answer [src]
   sin(1)      sin(1) 
- -------- + ---------
  3*cos(1)        3   
             3*cos (1)
$${{\tan ^31}\over{3}}$$
=
=
   sin(1)      sin(1) 
- -------- + ---------
  3*cos(1)        3   
             3*cos (1)
$$- \frac{\sin{\left(1 \right)}}{3 \cos{\left(1 \right)}} + \frac{\sin{\left(1 \right)}}{3 \cos^{3}{\left(1 \right)}}$$
Numerical answer [src]
1.25917391594425
1.25917391594425
The graph
Integral of tan^2xsec^2x dx

    Use the examples entering the upper and lower limits of integration.