Mister Exam

Other calculators

Integral of tan(5x)^5 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |     5        
 |  tan (5*x) dx
 |              
/               
0               
01tan5(5x)dx\int\limits_{0}^{1} \tan^{5}{\left(5 x \right)}\, dx
Integral(tan(5*x)^5, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    tan5(5x)=(sec2(5x)1)2tan(5x)\tan^{5}{\left(5 x \right)} = \left(\sec^{2}{\left(5 x \right)} - 1\right)^{2} \tan{\left(5 x \right)}

  2. There are multiple ways to do this integral.

    Method #1

    1. Let u=sec2(5x)u = \sec^{2}{\left(5 x \right)}.

      Then let du=10tan(5x)sec2(5x)dxdu = 10 \tan{\left(5 x \right)} \sec^{2}{\left(5 x \right)} dx and substitute du10\frac{du}{10}:

      u22u+110udu\int \frac{u^{2} - 2 u + 1}{10 u}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        u22u+1udu=u22u+1udu10\int \frac{u^{2} - 2 u + 1}{u}\, du = \frac{\int \frac{u^{2} - 2 u + 1}{u}\, du}{10}

        1. Rewrite the integrand:

          u22u+1u=u2+1u\frac{u^{2} - 2 u + 1}{u} = u - 2 + \frac{1}{u}

        2. Integrate term-by-term:

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            udu=u22\int u\, du = \frac{u^{2}}{2}

          1. The integral of a constant is the constant times the variable of integration:

            (2)du=2u\int \left(-2\right)\, du = - 2 u

          1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

          The result is: u222u+log(u)\frac{u^{2}}{2} - 2 u + \log{\left(u \right)}

        So, the result is: u220u5+log(u)10\frac{u^{2}}{20} - \frac{u}{5} + \frac{\log{\left(u \right)}}{10}

      Now substitute uu back in:

      log(sec2(5x))10+sec4(5x)20sec2(5x)5\frac{\log{\left(\sec^{2}{\left(5 x \right)} \right)}}{10} + \frac{\sec^{4}{\left(5 x \right)}}{20} - \frac{\sec^{2}{\left(5 x \right)}}{5}

    Method #2

    1. Rewrite the integrand:

      (sec2(5x)1)2tan(5x)=tan(5x)sec4(5x)2tan(5x)sec2(5x)+tan(5x)\left(\sec^{2}{\left(5 x \right)} - 1\right)^{2} \tan{\left(5 x \right)} = \tan{\left(5 x \right)} \sec^{4}{\left(5 x \right)} - 2 \tan{\left(5 x \right)} \sec^{2}{\left(5 x \right)} + \tan{\left(5 x \right)}

    2. Integrate term-by-term:

      1. Let u=sec(5x)u = \sec{\left(5 x \right)}.

        Then let du=5tan(5x)sec(5x)dxdu = 5 \tan{\left(5 x \right)} \sec{\left(5 x \right)} dx and substitute du5\frac{du}{5}:

        u35du\int \frac{u^{3}}{5}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          u3du=u3du5\int u^{3}\, du = \frac{\int u^{3}\, du}{5}

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u3du=u44\int u^{3}\, du = \frac{u^{4}}{4}

          So, the result is: u420\frac{u^{4}}{20}

        Now substitute uu back in:

        sec4(5x)20\frac{\sec^{4}{\left(5 x \right)}}{20}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (2tan(5x)sec2(5x))dx=2tan(5x)sec2(5x)dx\int \left(- 2 \tan{\left(5 x \right)} \sec^{2}{\left(5 x \right)}\right)\, dx = - 2 \int \tan{\left(5 x \right)} \sec^{2}{\left(5 x \right)}\, dx

        1. Let u=sec(5x)u = \sec{\left(5 x \right)}.

          Then let du=5tan(5x)sec(5x)dxdu = 5 \tan{\left(5 x \right)} \sec{\left(5 x \right)} dx and substitute du5\frac{du}{5}:

          u5du\int \frac{u}{5}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            udu=udu5\int u\, du = \frac{\int u\, du}{5}

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              udu=u22\int u\, du = \frac{u^{2}}{2}

            So, the result is: u210\frac{u^{2}}{10}

          Now substitute uu back in:

          sec2(5x)10\frac{\sec^{2}{\left(5 x \right)}}{10}

        So, the result is: sec2(5x)5- \frac{\sec^{2}{\left(5 x \right)}}{5}

      1. Rewrite the integrand:

        tan(5x)=sin(5x)cos(5x)\tan{\left(5 x \right)} = \frac{\sin{\left(5 x \right)}}{\cos{\left(5 x \right)}}

      2. Let u=cos(5x)u = \cos{\left(5 x \right)}.

        Then let du=5sin(5x)dxdu = - 5 \sin{\left(5 x \right)} dx and substitute du5- \frac{du}{5}:

        (15u)du\int \left(- \frac{1}{5 u}\right)\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          1udu=1udu5\int \frac{1}{u}\, du = - \frac{\int \frac{1}{u}\, du}{5}

          1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

          So, the result is: log(u)5- \frac{\log{\left(u \right)}}{5}

        Now substitute uu back in:

        log(cos(5x))5- \frac{\log{\left(\cos{\left(5 x \right)} \right)}}{5}

      The result is: log(cos(5x))5+sec4(5x)20sec2(5x)5- \frac{\log{\left(\cos{\left(5 x \right)} \right)}}{5} + \frac{\sec^{4}{\left(5 x \right)}}{20} - \frac{\sec^{2}{\left(5 x \right)}}{5}

    Method #3

    1. Rewrite the integrand:

      (sec2(5x)1)2tan(5x)=tan(5x)sec4(5x)2tan(5x)sec2(5x)+tan(5x)\left(\sec^{2}{\left(5 x \right)} - 1\right)^{2} \tan{\left(5 x \right)} = \tan{\left(5 x \right)} \sec^{4}{\left(5 x \right)} - 2 \tan{\left(5 x \right)} \sec^{2}{\left(5 x \right)} + \tan{\left(5 x \right)}

    2. Integrate term-by-term:

      1. Let u=sec(5x)u = \sec{\left(5 x \right)}.

        Then let du=5tan(5x)sec(5x)dxdu = 5 \tan{\left(5 x \right)} \sec{\left(5 x \right)} dx and substitute du5\frac{du}{5}:

        u35du\int \frac{u^{3}}{5}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          u3du=u3du5\int u^{3}\, du = \frac{\int u^{3}\, du}{5}

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u3du=u44\int u^{3}\, du = \frac{u^{4}}{4}

          So, the result is: u420\frac{u^{4}}{20}

        Now substitute uu back in:

        sec4(5x)20\frac{\sec^{4}{\left(5 x \right)}}{20}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (2tan(5x)sec2(5x))dx=2tan(5x)sec2(5x)dx\int \left(- 2 \tan{\left(5 x \right)} \sec^{2}{\left(5 x \right)}\right)\, dx = - 2 \int \tan{\left(5 x \right)} \sec^{2}{\left(5 x \right)}\, dx

        1. Let u=sec(5x)u = \sec{\left(5 x \right)}.

          Then let du=5tan(5x)sec(5x)dxdu = 5 \tan{\left(5 x \right)} \sec{\left(5 x \right)} dx and substitute du5\frac{du}{5}:

          u5du\int \frac{u}{5}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            udu=udu5\int u\, du = \frac{\int u\, du}{5}

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              udu=u22\int u\, du = \frac{u^{2}}{2}

            So, the result is: u210\frac{u^{2}}{10}

          Now substitute uu back in:

          sec2(5x)10\frac{\sec^{2}{\left(5 x \right)}}{10}

        So, the result is: sec2(5x)5- \frac{\sec^{2}{\left(5 x \right)}}{5}

      1. Rewrite the integrand:

        tan(5x)=sin(5x)cos(5x)\tan{\left(5 x \right)} = \frac{\sin{\left(5 x \right)}}{\cos{\left(5 x \right)}}

      2. Let u=cos(5x)u = \cos{\left(5 x \right)}.

        Then let du=5sin(5x)dxdu = - 5 \sin{\left(5 x \right)} dx and substitute du5- \frac{du}{5}:

        (15u)du\int \left(- \frac{1}{5 u}\right)\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          1udu=1udu5\int \frac{1}{u}\, du = - \frac{\int \frac{1}{u}\, du}{5}

          1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

          So, the result is: log(u)5- \frac{\log{\left(u \right)}}{5}

        Now substitute uu back in:

        log(cos(5x))5- \frac{\log{\left(\cos{\left(5 x \right)} \right)}}{5}

      The result is: log(cos(5x))5+sec4(5x)20sec2(5x)5- \frac{\log{\left(\cos{\left(5 x \right)} \right)}}{5} + \frac{\sec^{4}{\left(5 x \right)}}{20} - \frac{\sec^{2}{\left(5 x \right)}}{5}

  3. Add the constant of integration:

    log(sec2(5x))10+sec4(5x)20sec2(5x)5+constant\frac{\log{\left(\sec^{2}{\left(5 x \right)} \right)}}{10} + \frac{\sec^{4}{\left(5 x \right)}}{20} - \frac{\sec^{2}{\left(5 x \right)}}{5}+ \mathrm{constant}


The answer is:

log(sec2(5x))10+sec4(5x)20sec2(5x)5+constant\frac{\log{\left(\sec^{2}{\left(5 x \right)} \right)}}{10} + \frac{\sec^{4}{\left(5 x \right)}}{20} - \frac{\sec^{2}{\left(5 x \right)}}{5}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                         
 |                       2           /   2     \      4     
 |    5               sec (5*x)   log\sec (5*x)/   sec (5*x)
 | tan (5*x) dx = C - --------- + -------------- + ---------
 |                        5             10             20   
/                                                           
tan5(5x)dx=C+log(sec2(5x))10+sec4(5x)20sec2(5x)5\int \tan^{5}{\left(5 x \right)}\, dx = C + \frac{\log{\left(\sec^{2}{\left(5 x \right)} \right)}}{10} + \frac{\sec^{4}{\left(5 x \right)}}{20} - \frac{\sec^{2}{\left(5 x \right)}}{5}
The graph
0.001.000.100.200.300.400.500.600.700.800.904e23-2e23
Numerical answer [src]
872475987.400727
872475987.400727

    Use the examples entering the upper and lower limits of integration.