Integral of tan(5x)^5 dx
The solution
Detail solution
-
Rewrite the integrand:
tan5(5x)=(sec2(5x)−1)2tan(5x)
-
There are multiple ways to do this integral.
Method #1
-
Let u=sec2(5x).
Then let du=10tan(5x)sec2(5x)dx and substitute 10du:
∫10uu2−2u+1du
-
The integral of a constant times a function is the constant times the integral of the function:
∫uu2−2u+1du=10∫uu2−2u+1du
-
Rewrite the integrand:
uu2−2u+1=u−2+u1
-
Integrate term-by-term:
-
The integral of un is n+1un+1 when n=−1:
∫udu=2u2
-
The integral of a constant is the constant times the variable of integration:
∫(−2)du=−2u
-
The integral of u1 is log(u).
The result is: 2u2−2u+log(u)
So, the result is: 20u2−5u+10log(u)
Now substitute u back in:
10log(sec2(5x))+20sec4(5x)−5sec2(5x)
Method #2
-
Rewrite the integrand:
(sec2(5x)−1)2tan(5x)=tan(5x)sec4(5x)−2tan(5x)sec2(5x)+tan(5x)
-
Integrate term-by-term:
-
Let u=sec(5x).
Then let du=5tan(5x)sec(5x)dx and substitute 5du:
∫5u3du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u3du=5∫u3du
-
The integral of un is n+1un+1 when n=−1:
∫u3du=4u4
So, the result is: 20u4
Now substitute u back in:
20sec4(5x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2tan(5x)sec2(5x))dx=−2∫tan(5x)sec2(5x)dx
-
Let u=sec(5x).
Then let du=5tan(5x)sec(5x)dx and substitute 5du:
∫5udu
-
The integral of a constant times a function is the constant times the integral of the function:
∫udu=5∫udu
-
The integral of un is n+1un+1 when n=−1:
∫udu=2u2
So, the result is: 10u2
Now substitute u back in:
10sec2(5x)
So, the result is: −5sec2(5x)
-
Rewrite the integrand:
tan(5x)=cos(5x)sin(5x)
-
Let u=cos(5x).
Then let du=−5sin(5x)dx and substitute −5du:
∫(−5u1)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u1du=−5∫u1du
-
The integral of u1 is log(u).
So, the result is: −5log(u)
Now substitute u back in:
−5log(cos(5x))
The result is: −5log(cos(5x))+20sec4(5x)−5sec2(5x)
Method #3
-
Rewrite the integrand:
(sec2(5x)−1)2tan(5x)=tan(5x)sec4(5x)−2tan(5x)sec2(5x)+tan(5x)
-
Integrate term-by-term:
-
Let u=sec(5x).
Then let du=5tan(5x)sec(5x)dx and substitute 5du:
∫5u3du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u3du=5∫u3du
-
The integral of un is n+1un+1 when n=−1:
∫u3du=4u4
So, the result is: 20u4
Now substitute u back in:
20sec4(5x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2tan(5x)sec2(5x))dx=−2∫tan(5x)sec2(5x)dx
-
Let u=sec(5x).
Then let du=5tan(5x)sec(5x)dx and substitute 5du:
∫5udu
-
The integral of a constant times a function is the constant times the integral of the function:
∫udu=5∫udu
-
The integral of un is n+1un+1 when n=−1:
∫udu=2u2
So, the result is: 10u2
Now substitute u back in:
10sec2(5x)
So, the result is: −5sec2(5x)
-
Rewrite the integrand:
tan(5x)=cos(5x)sin(5x)
-
Let u=cos(5x).
Then let du=−5sin(5x)dx and substitute −5du:
∫(−5u1)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u1du=−5∫u1du
-
The integral of u1 is log(u).
So, the result is: −5log(u)
Now substitute u back in:
−5log(cos(5x))
The result is: −5log(cos(5x))+20sec4(5x)−5sec2(5x)
-
Add the constant of integration:
10log(sec2(5x))+20sec4(5x)−5sec2(5x)+constant
The answer is:
10log(sec2(5x))+20sec4(5x)−5sec2(5x)+constant
The answer (Indefinite)
[src]
/
| 2 / 2 \ 4
| 5 sec (5*x) log\sec (5*x)/ sec (5*x)
| tan (5*x) dx = C - --------- + -------------- + ---------
| 5 10 20
/
∫tan5(5x)dx=C+10log(sec2(5x))+20sec4(5x)−5sec2(5x)
The graph
Use the examples entering the upper and lower limits of integration.