Mister Exam

Other calculators


tan^3xsec^5x

Integral of tan^3xsec^5x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |     3       5      
 |  tan (x)*sec (x) dx
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \tan^{3}{\left(x \right)} \sec^{5}{\left(x \right)}\, dx$$
Integral(tan(x)^3*sec(x)^5, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. Integrate term-by-term:

        1. The integral of is when :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        The result is:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      The result is:

    Method #3

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      The result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                          
 |                             5         7   
 |    3       5             sec (x)   sec (x)
 | tan (x)*sec (x) dx = C - ------- + -------
 |                             5         7   
/                                            
$$\int \tan^{3}{\left(x \right)} \sec^{5}{\left(x \right)}\, dx = C + \frac{\sec^{7}{\left(x \right)}}{7} - \frac{\sec^{5}{\left(x \right)}}{5}$$
The graph
The answer [src]
               2   
2    -5 + 7*cos (1)
-- - --------------
35           7     
       35*cos (1)  
$$\frac{2}{35} - \frac{-5 + 7 \cos^{2}{\left(1 \right)}}{35 \cos^{7}{\left(1 \right)}}$$
=
=
               2   
2    -5 + 7*cos (1)
-- - --------------
35           7     
       35*cos (1)  
$$\frac{2}{35} - \frac{-5 + 7 \cos^{2}{\left(1 \right)}}{35 \cos^{7}{\left(1 \right)}}$$
2/35 - (-5 + 7*cos(1)^2)/(35*cos(1)^7)
Numerical answer [src]
6.34140275640311
6.34140275640311
The graph
Integral of tan^3xsec^5x dx

    Use the examples entering the upper and lower limits of integration.