3 / | | t | ---------- dt | / 2 \ | 2*\t - 1/ | / 2
Integral(t/((2*(t^2 - 1))), (t, 2, 3))
/ | | t | ---------- dt | / 2 \ | 2*\t - 1/ | /
/ 2*2*t \ |--------------| | 2 | t \2*t + 0*t - 2/ ---------- = ---------------- / 2 \ 4 2*\t - 1/
/ | | t | ---------- dt | / 2 \ = | 2*\t - 1/ | /
/ | | 2*2*t | -------------- dt | 2 | 2*t + 0*t - 2 | / -------------------- 4
/ | | 2*2*t | -------------- dt | 2 | 2*t + 0*t - 2 | / -------------------- 4
2 u = 2*t
/ | | 1 | ------ du | -2 + u | / log(-2 + u) ------------ = ----------- 4 4
/ | | 2*2*t | -------------- dt | 2 | 2*t + 0*t - 2 | / 2\ / log\-1 + t / -------------------- = ------------ 4 4
/ 2\ log\-1 + t / C + ------------ 4
/ | | t log(1 + t) log(-1 + t) | ---------- dt = C + ---------- + ----------- | / 2 \ 4 4 | 2*\t - 1/ | /
log(3) log(8) - ------ + ------ 4 4
=
log(3) log(8) - ------ + ------ 4 4
-log(3)/4 + log(8)/4
Use the examples entering the upper and lower limits of integration.