Mister Exam

Other calculators

Integral of t/(2*(t^2-1)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  3              
  /              
 |               
 |      t        
 |  ---------- dt
 |    / 2    \   
 |  2*\t  - 1/   
 |               
/                
2                
$$\int\limits_{2}^{3} \frac{t}{2 \left(t^{2} - 1\right)}\, dt$$
Integral(t/((2*(t^2 - 1))), (t, 2, 3))
Detail solution
We have the integral:
  /             
 |              
 |     t        
 | ---------- dt
 |   / 2    \   
 | 2*\t  - 1/   
 |              
/               
Rewrite the integrand
             /    2*2*t     \
             |--------------|
             |   2          |
    t        \2*t  + 0*t - 2/
---------- = ----------------
  / 2    \          4        
2*\t  - 1/                   
or
  /               
 |                
 |     t          
 | ---------- dt  
 |   / 2    \    =
 | 2*\t  - 1/     
 |                
/                 
  
  /                 
 |                  
 |     2*2*t        
 | -------------- dt
 |    2             
 | 2*t  + 0*t - 2   
 |                  
/                   
--------------------
         4          
In the integral
  /                 
 |                  
 |     2*2*t        
 | -------------- dt
 |    2             
 | 2*t  + 0*t - 2   
 |                  
/                   
--------------------
         4          
do replacement
       2
u = 2*t 
then
the integral =
  /                       
 |                        
 |   1                    
 | ------ du              
 | -2 + u                 
 |                        
/              log(-2 + u)
------------ = -----------
     4              4     
do backward replacement
  /                                
 |                                 
 |     2*2*t                       
 | -------------- dt               
 |    2                            
 | 2*t  + 0*t - 2                  
 |                        /      2\
/                      log\-1 + t /
-------------------- = ------------
         4                  4      
Solution is:
       /      2\
    log\-1 + t /
C + ------------
         4      
The answer (Indefinite) [src]
  /                                            
 |                                             
 |     t               log(1 + t)   log(-1 + t)
 | ---------- dt = C + ---------- + -----------
 |   / 2    \              4             4     
 | 2*\t  - 1/                                  
 |                                             
/                                              
$$\int \frac{t}{2 \left(t^{2} - 1\right)}\, dt = C + \frac{\log{\left(t - 1 \right)}}{4} + \frac{\log{\left(t + 1 \right)}}{4}$$
The graph
The answer [src]
  log(3)   log(8)
- ------ + ------
    4        4   
$$- \frac{\log{\left(3 \right)}}{4} + \frac{\log{\left(8 \right)}}{4}$$
=
=
  log(3)   log(8)
- ------ + ------
    4        4   
$$- \frac{\log{\left(3 \right)}}{4} + \frac{\log{\left(8 \right)}}{4}$$
-log(3)/4 + log(8)/4
Numerical answer [src]
0.245207313252932
0.245207313252932

    Use the examples entering the upper and lower limits of integration.