Mister Exam

Integral of t³-5 dt

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    1             
    /             
   |              
   |   / 3    \   
   |   \t  - 5/ dt
   |              
  /               
sin(x)            
$$\int\limits_{\sin{\left(x \right)}}^{1} \left(t^{3} - 5\right)\, dt$$
Integral(t^3 - 5, (t, sin(x), 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of is when :

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                          
 |                          4
 | / 3    \                t 
 | \t  - 5/ dt = C - 5*t + --
 |                         4 
/                            
$$\int \left(t^{3} - 5\right)\, dt = C + \frac{t^{4}}{4} - 5 t$$
The answer [src]
                     4   
  19              sin (x)
- -- + 5*sin(x) - -------
  4                  4   
$$- \frac{\sin^{4}{\left(x \right)}}{4} + 5 \sin{\left(x \right)} - \frac{19}{4}$$
=
=
                     4   
  19              sin (x)
- -- + 5*sin(x) - -------
  4                  4   
$$- \frac{\sin^{4}{\left(x \right)}}{4} + 5 \sin{\left(x \right)} - \frac{19}{4}$$
-19/4 + 5*sin(x) - sin(x)^4/4

    Use the examples entering the upper and lower limits of integration.