Mister Exam

Integral of t²costdt dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |   2          
 |  t *cos(t) dt
 |              
/               
0               
01t2cos(t)dt\int\limits_{0}^{1} t^{2} \cos{\left(t \right)}\, dt
Integral(t^2*cos(t), (t, 0, 1))
Detail solution
  1. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(t)=t2u{\left(t \right)} = t^{2} and let dv(t)=cos(t)\operatorname{dv}{\left(t \right)} = \cos{\left(t \right)}.

    Then du(t)=2t\operatorname{du}{\left(t \right)} = 2 t.

    To find v(t)v{\left(t \right)}:

    1. The integral of cosine is sine:

      cos(t)dt=sin(t)\int \cos{\left(t \right)}\, dt = \sin{\left(t \right)}

    Now evaluate the sub-integral.

  2. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(t)=2tu{\left(t \right)} = 2 t and let dv(t)=sin(t)\operatorname{dv}{\left(t \right)} = \sin{\left(t \right)}.

    Then du(t)=2\operatorname{du}{\left(t \right)} = 2.

    To find v(t)v{\left(t \right)}:

    1. The integral of sine is negative cosine:

      sin(t)dt=cos(t)\int \sin{\left(t \right)}\, dt = - \cos{\left(t \right)}

    Now evaluate the sub-integral.

  3. The integral of a constant times a function is the constant times the integral of the function:

    (2cos(t))dt=2cos(t)dt\int \left(- 2 \cos{\left(t \right)}\right)\, dt = - 2 \int \cos{\left(t \right)}\, dt

    1. The integral of cosine is sine:

      cos(t)dt=sin(t)\int \cos{\left(t \right)}\, dt = \sin{\left(t \right)}

    So, the result is: 2sin(t)- 2 \sin{\left(t \right)}

  4. Add the constant of integration:

    t2sin(t)+2tcos(t)2sin(t)+constantt^{2} \sin{\left(t \right)} + 2 t \cos{\left(t \right)} - 2 \sin{\left(t \right)}+ \mathrm{constant}


The answer is:

t2sin(t)+2tcos(t)2sin(t)+constantt^{2} \sin{\left(t \right)} + 2 t \cos{\left(t \right)} - 2 \sin{\left(t \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                    
 |                                                     
 |  2                             2                    
 | t *cos(t) dt = C - 2*sin(t) + t *sin(t) + 2*t*cos(t)
 |                                                     
/                                                      
t2cos(t)dt=C+t2sin(t)+2tcos(t)2sin(t)\int t^{2} \cos{\left(t \right)}\, dt = C + t^{2} \sin{\left(t \right)} + 2 t \cos{\left(t \right)} - 2 \sin{\left(t \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.01.0
The answer [src]
-sin(1) + 2*cos(1)
sin(1)+2cos(1)- \sin{\left(1 \right)} + 2 \cos{\left(1 \right)}
=
=
-sin(1) + 2*cos(1)
sin(1)+2cos(1)- \sin{\left(1 \right)} + 2 \cos{\left(1 \right)}
-sin(1) + 2*cos(1)
Numerical answer [src]
0.239133626928383
0.239133626928383
The graph
Integral of t²costdt dx

    Use the examples entering the upper and lower limits of integration.