Integral of t²costdt dx
The solution
Detail solution
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(t)=t2 and let dv(t)=cos(t).
Then du(t)=2t.
To find v(t):
-
The integral of cosine is sine:
∫cos(t)dt=sin(t)
Now evaluate the sub-integral.
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(t)=2t and let dv(t)=sin(t).
Then du(t)=2.
To find v(t):
-
The integral of sine is negative cosine:
∫sin(t)dt=−cos(t)
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2cos(t))dt=−2∫cos(t)dt
-
The integral of cosine is sine:
∫cos(t)dt=sin(t)
So, the result is: −2sin(t)
-
Add the constant of integration:
t2sin(t)+2tcos(t)−2sin(t)+constant
The answer is:
t2sin(t)+2tcos(t)−2sin(t)+constant
The answer (Indefinite)
[src]
/
|
| 2 2
| t *cos(t) dt = C - 2*sin(t) + t *sin(t) + 2*t*cos(t)
|
/
∫t2cos(t)dt=C+t2sin(t)+2tcos(t)−2sin(t)
The graph
−sin(1)+2cos(1)
=
−sin(1)+2cos(1)
Use the examples entering the upper and lower limits of integration.