Mister Exam

Other calculators

Integral of sqrt(y)-1/x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |  /  ___   1\   
 |  |\/ y  - -| dx
 |  \        x/   
 |                
/                 
9                 
$$\int\limits_{9}^{1} \left(\sqrt{y} - \frac{1}{x}\right)\, dx$$
Integral(sqrt(y) - 1/x, (x, 9, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant is the constant times the variable of integration:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is .

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                     
 |                                      
 | /  ___   1\                       ___
 | |\/ y  - -| dx = C - log(x) + x*\/ y 
 | \        x/                          
 |                                      
/                                       
$$\int \left(\sqrt{y} - \frac{1}{x}\right)\, dx = C + x \sqrt{y} - \log{\left(x \right)}$$
The answer [src]
      ___         
- 8*\/ y  + log(9)
$$- 8 \sqrt{y} + \log{\left(9 \right)}$$
=
=
      ___         
- 8*\/ y  + log(9)
$$- 8 \sqrt{y} + \log{\left(9 \right)}$$
-8*sqrt(y) + log(9)

    Use the examples entering the upper and lower limits of integration.