Mister Exam

Other calculators

Integral of sqrt(x^2-x-2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |     ____________   
 |    /  2            
 |  \/  x  - x - 2  dx
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \sqrt{\left(x^{2} - x\right) - 2}\, dx$$
Integral(sqrt(x^2 - x - 2), (x, 0, 1))
The answer [src]
  1                        
  /                        
 |                         
 |    _______   ________   
 |  \/ 1 + x *\/ -2 + x  dx
 |                         
/                          
0                          
$$\int\limits_{0}^{1} \sqrt{x - 2} \sqrt{x + 1}\, dx$$
=
=
  1                        
  /                        
 |                         
 |    _______   ________   
 |  \/ 1 + x *\/ -2 + x  dx
 |                         
/                          
0                          
$$\int\limits_{0}^{1} \sqrt{x - 2} \sqrt{x + 1}\, dx$$
Integral(sqrt(1 + x)*sqrt(-2 + x), (x, 0, 1))
Numerical answer [src]
(0.0 + 1.47173982745832j)
(0.0 + 1.47173982745832j)

    Use the examples entering the upper and lower limits of integration.