___
2*\/ 2
/
|
| ________
| / 2
| \/ x - 8
| ----------- dx
| 4
| x
|
/
___
4*\/ 6
-------
3
Integral(sqrt(x^2 - 8)/x^4, (x, 4*sqrt(6)/3, 2*sqrt(2)))
TrigSubstitutionRule(theta=_theta, func=2*sqrt(2)*sec(_theta), rewritten=sin(_theta)**2*cos(_theta)/8, substep=ConstantTimesRule(constant=1/8, other=sin(_theta)**2*cos(_theta), substep=URule(u_var=_u, u_func=sin(_theta), constant=1, substep=PowerRule(base=_u, exp=2, context=_u**2, symbol=_u), context=sin(_theta)**2*cos(_theta), symbol=_theta), context=sin(_theta)**2*cos(_theta)/8, symbol=_theta), restriction=(x > -2*sqrt(2)) & (x < 2*sqrt(2)), context=sqrt(x**2 - 8)/x**4, symbol=x)
Add the constant of integration:
The answer is:
/ | | ________ // 3/2 \ | / 2 ||/ 2\ | | \/ x - 8 ||\-8 + x / / ___ ___\| | ----------- dx = C + |<------------ for And\x > -2*\/ 2 , x < 2*\/ 2 /| | 4 || 3 | | x || 24*x | | \\ / /
Use the examples entering the upper and lower limits of integration.