Mister Exam

Other calculators

Integral of sqrt(x)+3*x^3-2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2                      
  /                      
 |                       
 |  /  ___      3    \   
 |  \\/ x  + 3*x  - 2/ dx
 |                       
/                        
0                        
$$\int\limits_{0}^{2} \left(\left(\sqrt{x} + 3 x^{3}\right) - 2\right)\, dx$$
Integral(sqrt(x) + 3*x^3 - 2, (x, 0, 2))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of is when :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      The result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                               
 |                                      3/2      4
 | /  ___      3    \                2*x      3*x 
 | \\/ x  + 3*x  - 2/ dx = C - 2*x + ------ + ----
 |                                     3       4  
/                                                 
$$\int \left(\left(\sqrt{x} + 3 x^{3}\right) - 2\right)\, dx = C + \frac{2 x^{\frac{3}{2}}}{3} + \frac{3 x^{4}}{4} - 2 x$$
The graph
The answer [src]
        ___
    4*\/ 2 
8 + -------
       3   
$$\frac{4 \sqrt{2}}{3} + 8$$
=
=
        ___
    4*\/ 2 
8 + -------
       3   
$$\frac{4 \sqrt{2}}{3} + 8$$
8 + 4*sqrt(2)/3
Numerical answer [src]
9.88561808316413
9.88561808316413

    Use the examples entering the upper and lower limits of integration.