Mister Exam

Other calculators

Integral of ((sqrt(x))*1)/(x-6) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 49         
  /         
 |          
 |    ___   
 |  \/ x    
 |  ----- dx
 |  x - 6   
 |          
/           
25          
$$\int\limits_{25}^{49} \frac{\sqrt{x}}{x - 6}\, dx$$
Integral(sqrt(x)/(x - 6), (x, 25, 49))
The answer (Indefinite) [src]
                               //            /  ___   ___\            \
                               ||   ___      |\/ 6 *\/ x |            |
  /                            ||-\/ 6 *acoth|-----------|            |
 |                             ||            \     6     /            |
 |   ___                       ||--------------------------  for x > 6|
 | \/ x               ___      ||            6                        |
 | ----- dx = C + 2*\/ x  + 12*|<                                     |
 | x - 6                       ||            /  ___   ___\            |
 |                             ||   ___      |\/ 6 *\/ x |            |
/                              ||-\/ 6 *atanh|-----------|            |
                               ||            \     6     /            |
                               ||--------------------------  for x < 6|
                               \\            6                        /
$$\int \frac{\sqrt{x}}{x - 6}\, dx = C + 2 \sqrt{x} + 12 \left(\begin{cases} - \frac{\sqrt{6} \operatorname{acoth}{\left(\frac{\sqrt{6} \sqrt{x}}{6} \right)}}{6} & \text{for}\: x > 6 \\- \frac{\sqrt{6} \operatorname{atanh}{\left(\frac{\sqrt{6} \sqrt{x}}{6} \right)}}{6} & \text{for}\: x < 6 \end{cases}\right)$$
The graph
The answer [src]
      ___    /      ___\     ___    /      ___\     ___    /      ___\     ___    /      ___\
4 + \/ 6 *log\5 + \/ 6 / + \/ 6 *log\7 - \/ 6 / - \/ 6 *log\5 - \/ 6 / - \/ 6 *log\7 + \/ 6 /
$$- \sqrt{6} \log{\left(\sqrt{6} + 7 \right)} - \sqrt{6} \log{\left(5 - \sqrt{6} \right)} + \sqrt{6} \log{\left(7 - \sqrt{6} \right)} + 4 + \sqrt{6} \log{\left(\sqrt{6} + 5 \right)}$$
=
=
      ___    /      ___\     ___    /      ___\     ___    /      ___\     ___    /      ___\
4 + \/ 6 *log\5 + \/ 6 / + \/ 6 *log\7 - \/ 6 / - \/ 6 *log\5 - \/ 6 / - \/ 6 *log\7 + \/ 6 /
$$- \sqrt{6} \log{\left(\sqrt{6} + 7 \right)} - \sqrt{6} \log{\left(5 - \sqrt{6} \right)} + \sqrt{6} \log{\left(7 - \sqrt{6} \right)} + 4 + \sqrt{6} \log{\left(\sqrt{6} + 5 \right)}$$
4 + sqrt(6)*log(5 + sqrt(6)) + sqrt(6)*log(7 - sqrt(6)) - sqrt(6)*log(5 - sqrt(6)) - sqrt(6)*log(7 + sqrt(6))
Numerical answer [src]
4.83559621346543
4.83559621346543

    Use the examples entering the upper and lower limits of integration.