Integral of (sqrt(x-1))/sqrt(1+x) dx
The solution
The answer (Indefinite)
[src]
// / ___ _______\ 3/2 _______ \
/ || |\/ 2 *\/ 1 + x | (1 + x) 2*\/ 1 + x |1 + x| |
| || - 2*acosh|---------------| + ---------- - ----------- for ------- > 1|
| _______ || \ 2 / ________ ________ 2 |
| \/ x - 1 || \/ -1 + x \/ -1 + x |
| --------- dx = C + |< |
| _______ || / ___ _______\ 3/2 _______ |
| \/ 1 + x || |\/ 2 *\/ 1 + x | I*(1 + x) 2*I*\/ 1 + x |
| ||2*I*asin|---------------| - ------------ + ------------- otherwise |
/ || \ 2 / _______ _______ |
\\ \/ 1 - x \/ 1 - x /
∫x+1x−1dx=C+⎩⎨⎧−2acosh(22x+1)+x−1(x+1)23−x−12x+12iasin(22x+1)−1−xi(x+1)23+1−x2ix+1for2∣x+1∣>1otherwise
The graph
−i+2iπ
=
−i+2iπ
(0.0 + 0.570796326794897j)
(0.0 + 0.570796326794897j)
Use the examples entering the upper and lower limits of integration.