Mister Exam

Other calculators

Integral of sqrt((x-1)/(4sqrt(x))) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |       _________   
 |      /  x - 1     
 |     /  -------  dx
 |    /       ___    
 |  \/    4*\/ x     
 |                   
/                    
0                    
$$\int\limits_{0}^{1} \sqrt{\frac{x - 1}{4 \sqrt{x}}}\, dx$$
Integral(sqrt((x - 1)/((4*sqrt(x)))), (x, 0, 1))
The answer (Indefinite) [src]
                             /                       
                            |                        
                            |      _______________   
                            |     /   ___     1      
                            |    /  \/ x  - -----  dx
  /                         |   /             ___    
 |                          | \/            \/ x     
 |      _________           |                        
 |     /  x - 1            /                         
 |    /  -------  dx = C + --------------------------
 |   /       ___                       2             
 | \/    4*\/ x                                      
 |                                                   
/                                                    
$$\int \sqrt{\frac{x - 1}{4 \sqrt{x}}}\, dx = C + \frac{\int \sqrt{\sqrt{x} - \frac{1}{\sqrt{x}}}\, dx}{2}$$
The answer [src]
               _                 
              |_  /-1/2, 3/4 |  \
I*Gamma(3/4)* |   |          | 1|
             2  1 \   7/4    |  /
---------------------------------
           2*Gamma(7/4)          
$$\frac{i \Gamma\left(\frac{3}{4}\right) {{}_{2}F_{1}\left(\begin{matrix} - \frac{1}{2}, \frac{3}{4} \\ \frac{7}{4} \end{matrix}\middle| {1} \right)}}{2 \Gamma\left(\frac{7}{4}\right)}$$
=
=
               _                 
              |_  /-1/2, 3/4 |  \
I*Gamma(3/4)* |   |          | 1|
             2  1 \   7/4    |  /
---------------------------------
           2*Gamma(7/4)          
$$\frac{i \Gamma\left(\frac{3}{4}\right) {{}_{2}F_{1}\left(\begin{matrix} - \frac{1}{2}, \frac{3}{4} \\ \frac{7}{4} \end{matrix}\middle| {1} \right)}}{2 \Gamma\left(\frac{7}{4}\right)}$$
i*gamma(3/4)*hyper((-1/2, 3/4), (7/4,), 1)/(2*gamma(7/4))
Numerical answer [src]
(0.0 + 0.479256093894234j)
(0.0 + 0.479256093894234j)

    Use the examples entering the upper and lower limits of integration.