Integral of sqrtx(lnx)dx dx
The solution
Detail solution
-
Let u=log(x).
Then let du=xdx and substitute dut:
∫tu2e2udu
-
The integral of a constant times a function is the constant times the integral of the function:
∫u2e2udu=t∫u2e2udu
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=u2 and let dv(u)=e2u.
Then du(u)=2u.
To find v(u):
-
Let u=2u.
Then let du=2du and substitute 2du:
∫2eudu
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
Now substitute u back in:
2e2u
Now evaluate the sub-integral.
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=u and let dv(u)=e2u.
Then du(u)=1.
To find v(u):
-
Let u=2u.
Then let du=2du and substitute 2du:
∫2eudu
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
Now substitute u back in:
2e2u
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫2e2udu=2∫e2udu
-
Let u=2u.
Then let du=2du and substitute 2du:
∫2eudu
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
Now substitute u back in:
2e2u
So, the result is: 4e2u
So, the result is: t(2u2e2u−2ue2u+4e2u)
Now substitute u back in:
t(2x2log(x)2−2x2log(x)+4x2)
-
Now simplify:
4tx2(2log(x)2−2log(x)+1)
-
Add the constant of integration:
4tx2(2log(x)2−2log(x)+1)+constant
The answer is:
4tx2(2log(x)2−2log(x)+1)+constant
The answer (Indefinite)
[src]
/
| / 2 2 2 2 \
| 2 |x x *log (x) x *log(x)|
| t*x*log (x) dx = C + t*|-- + ---------- - ---------|
| \4 2 2 /
/
∫txlog(x)2dx=C+t(2x2log(x)2−2x2log(x)+4x2)
6
t 13*t*e
- - + -------
4 4
−4t+413te6
=
6
t 13*t*e
- - + -------
4 4
−4t+413te6
Use the examples entering the upper and lower limits of integration.