Mister Exam

Integral of sqrtx(lnx)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  3               
 e                
  /               
 |                
 |         2      
 |  t*x*log (x) dx
 |                
/                 
1                 
1e3txlog(x)2dx\int\limits_{1}^{e^{3}} t x \log{\left(x \right)}^{2}\, dx
Integral((t*x)*log(x)^2, (x, 1, exp(3)))
Detail solution
  1. Let u=log(x)u = \log{\left(x \right)}.

    Then let du=dxxdu = \frac{dx}{x} and substitute dutdu t:

    tu2e2udu\int t u^{2} e^{2 u}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      u2e2udu=tu2e2udu\int u^{2} e^{2 u}\, du = t \int u^{2} e^{2 u}\, du

      1. Use integration by parts:

        udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

        Let u(u)=u2u{\left(u \right)} = u^{2} and let dv(u)=e2u\operatorname{dv}{\left(u \right)} = e^{2 u}.

        Then du(u)=2u\operatorname{du}{\left(u \right)} = 2 u.

        To find v(u)v{\left(u \right)}:

        1. Let u=2uu = 2 u.

          Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

          eu2du\int \frac{e^{u}}{2}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            False\text{False}

            1. The integral of the exponential function is itself.

              eudu=eu\int e^{u}\, du = e^{u}

            So, the result is: eu2\frac{e^{u}}{2}

          Now substitute uu back in:

          e2u2\frac{e^{2 u}}{2}

        Now evaluate the sub-integral.

      2. Use integration by parts:

        udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

        Let u(u)=uu{\left(u \right)} = u and let dv(u)=e2u\operatorname{dv}{\left(u \right)} = e^{2 u}.

        Then du(u)=1\operatorname{du}{\left(u \right)} = 1.

        To find v(u)v{\left(u \right)}:

        1. Let u=2uu = 2 u.

          Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

          eu2du\int \frac{e^{u}}{2}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            False\text{False}

            1. The integral of the exponential function is itself.

              eudu=eu\int e^{u}\, du = e^{u}

            So, the result is: eu2\frac{e^{u}}{2}

          Now substitute uu back in:

          e2u2\frac{e^{2 u}}{2}

        Now evaluate the sub-integral.

      3. The integral of a constant times a function is the constant times the integral of the function:

        e2u2du=e2udu2\int \frac{e^{2 u}}{2}\, du = \frac{\int e^{2 u}\, du}{2}

        1. Let u=2uu = 2 u.

          Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

          eu2du\int \frac{e^{u}}{2}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            False\text{False}

            1. The integral of the exponential function is itself.

              eudu=eu\int e^{u}\, du = e^{u}

            So, the result is: eu2\frac{e^{u}}{2}

          Now substitute uu back in:

          e2u2\frac{e^{2 u}}{2}

        So, the result is: e2u4\frac{e^{2 u}}{4}

      So, the result is: t(u2e2u2ue2u2+e2u4)t \left(\frac{u^{2} e^{2 u}}{2} - \frac{u e^{2 u}}{2} + \frac{e^{2 u}}{4}\right)

    Now substitute uu back in:

    t(x2log(x)22x2log(x)2+x24)t \left(\frac{x^{2} \log{\left(x \right)}^{2}}{2} - \frac{x^{2} \log{\left(x \right)}}{2} + \frac{x^{2}}{4}\right)

  2. Now simplify:

    tx2(2log(x)22log(x)+1)4\frac{t x^{2} \left(2 \log{\left(x \right)}^{2} - 2 \log{\left(x \right)} + 1\right)}{4}

  3. Add the constant of integration:

    tx2(2log(x)22log(x)+1)4+constant\frac{t x^{2} \left(2 \log{\left(x \right)}^{2} - 2 \log{\left(x \right)} + 1\right)}{4}+ \mathrm{constant}


The answer is:

tx2(2log(x)22log(x)+1)4+constant\frac{t x^{2} \left(2 \log{\left(x \right)}^{2} - 2 \log{\left(x \right)} + 1\right)}{4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                    
 |                        / 2    2    2       2       \
 |        2               |x    x *log (x)   x *log(x)|
 | t*x*log (x) dx = C + t*|-- + ---------- - ---------|
 |                        \4        2            2    /
/                                                      
txlog(x)2dx=C+t(x2log(x)22x2log(x)2+x24)\int t x \log{\left(x \right)}^{2}\, dx = C + t \left(\frac{x^{2} \log{\left(x \right)}^{2}}{2} - \frac{x^{2} \log{\left(x \right)}}{2} + \frac{x^{2}}{4}\right)
The answer [src]
            6
  t   13*t*e 
- - + -------
  4      4   
t4+13te64- \frac{t}{4} + \frac{13 t e^{6}}{4}
=
=
            6
  t   13*t*e 
- - + -------
  4      4   
t4+13te64- \frac{t}{4} + \frac{13 t e^{6}}{4}
-t/4 + 13*t*exp(6)/4

    Use the examples entering the upper and lower limits of integration.