Mister Exam

Other calculators


sqrt(x)/(x^2+1)

Integral of sqrt(x)/(x^2+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |    ___    
 |  \/ x     
 |  ------ dx
 |   2       
 |  x  + 1   
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{\sqrt{x}}{x^{2} + 1}\, dx$$
Integral(sqrt(x)/(x^2 + 1), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                                                                                                            
 |                                                                                                                                             
 |   ___             ___     /      ___   ___\     ___     /       ___   ___\     ___    /          ___   ___\     ___    /          ___   ___\
 | \/ x            \/ 2 *atan\1 + \/ 2 *\/ x /   \/ 2 *atan\-1 + \/ 2 *\/ x /   \/ 2 *log\1 + x + \/ 2 *\/ x /   \/ 2 *log\1 + x - \/ 2 *\/ x /
 | ------ dx = C + --------------------------- + ---------------------------- - ------------------------------ + ------------------------------
 |  2                           2                             2                               4                                4               
 | x  + 1                                                                                                                                      
 |                                                                                                                                             
/                                                                                                                                              
$$\int \frac{\sqrt{x}}{x^{2} + 1}\, dx = C + \frac{\sqrt{2} \log{\left(- \sqrt{2} \sqrt{x} + x + 1 \right)}}{4} - \frac{\sqrt{2} \log{\left(\sqrt{2} \sqrt{x} + x + 1 \right)}}{4} + \frac{\sqrt{2} \operatorname{atan}{\left(\sqrt{2} \sqrt{x} - 1 \right)}}{2} + \frac{\sqrt{2} \operatorname{atan}{\left(\sqrt{2} \sqrt{x} + 1 \right)}}{2}$$
The graph
The answer [src]
    ___    /        ___\        ___     ___    /        ___\
  \/ 2 *log\8 + 4*\/ 2 /   pi*\/ 2    \/ 2 *log\8 - 4*\/ 2 /
- ---------------------- + -------- + ----------------------
            4                 4                 4           
$$- \frac{\sqrt{2} \log{\left(4 \sqrt{2} + 8 \right)}}{4} + \frac{\sqrt{2} \log{\left(8 - 4 \sqrt{2} \right)}}{4} + \frac{\sqrt{2} \pi}{4}$$
=
=
    ___    /        ___\        ___     ___    /        ___\
  \/ 2 *log\8 + 4*\/ 2 /   pi*\/ 2    \/ 2 *log\8 - 4*\/ 2 /
- ---------------------- + -------- + ----------------------
            4                 4                 4           
$$- \frac{\sqrt{2} \log{\left(4 \sqrt{2} + 8 \right)}}{4} + \frac{\sqrt{2} \log{\left(8 - 4 \sqrt{2} \right)}}{4} + \frac{\sqrt{2} \pi}{4}$$
-sqrt(2)*log(8 + 4*sqrt(2))/4 + pi*sqrt(2)/4 + sqrt(2)*log(8 - 4*sqrt(2))/4
Numerical answer [src]
0.487495494399361
0.487495494399361
The graph
Integral of sqrt(x)/(x^2+1) dx

    Use the examples entering the upper and lower limits of integration.