Mister Exam

Other calculators

Integral of (sqrt(2+4*ln(x)))/x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |    ______________   
 |  \/ 2 + 4*log(x)    
 |  ---------------- dx
 |         x           
 |                     
/                      
0                      
$$\int\limits_{0}^{1} \frac{\sqrt{4 \log{\left(x \right)} + 2}}{x}\, dx$$
Integral(sqrt(2 + 4*log(x))/x, (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of is when :

              So, the result is:

            Now substitute back in:

          So, the result is:

        Now substitute back in:

      So, the result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                           
 |                                            
 |   ______________                        3/2
 | \/ 2 + 4*log(x)           (2 + 4*log(x))   
 | ---------------- dx = C + -----------------
 |        x                          6        
 |                                            
/                                             
$$\int \frac{\sqrt{4 \log{\left(x \right)} + 2}}{x}\, dx = C + \frac{\left(4 \log{\left(x \right)} + 2\right)^{\frac{3}{2}}}{6}$$
The answer [src]
         ___
       \/ 2 
oo*I + -----
         3  
$$\frac{\sqrt{2}}{3} + \infty i$$
=
=
         ___
       \/ 2 
oo*I + -----
         3  
$$\frac{\sqrt{2}}{3} + \infty i$$
oo*i + sqrt(2)/3
Numerical answer [src]
(0.471864188719902 + 383.726580059475j)
(0.471864188719902 + 383.726580059475j)

    Use the examples entering the upper and lower limits of integration.