Mister Exam

Other calculators

Integral of sqrt(24x^2+12x-4x^3) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                            
  /                            
 |                             
 |     _____________________   
 |    /     2             3    
 |  \/  24*x  + 12*x - 4*x   dx
 |                             
/                              
0                              
$$\int\limits_{0}^{1} \sqrt{- 4 x^{3} + \left(24 x^{2} + 12 x\right)}\, dx$$
Integral(sqrt(24*x^2 + 12*x - 4*x^3), (x, 0, 1))
The answer (Indefinite) [src]
  /                                      /                         
 |                                      |                          
 |    _____________________             |    ___________________   
 |   /     2             3              |   /    3            2    
 | \/  24*x  + 12*x - 4*x   dx = C + 2* | \/  - x  + 3*x + 6*x   dx
 |                                      |                          
/                                      /                           
$$\int \sqrt{- 4 x^{3} + \left(24 x^{2} + 12 x\right)}\, dx = C + 2 \int \sqrt{- x^{3} + 6 x^{2} + 3 x}\, dx$$
The answer [src]
    1                           
    /                           
   |                            
   |           ______________   
   |    ___   /      2          
2* |  \/ x *\/  3 - x  + 6*x  dx
   |                            
  /                             
  0                             
$$2 \int\limits_{0}^{1} \sqrt{x} \sqrt{- x^{2} + 6 x + 3}\, dx$$
=
=
    1                           
    /                           
   |                            
   |           ______________   
   |    ___   /      2          
2* |  \/ x *\/  3 - x  + 6*x  dx
   |                            
  /                             
  0                             
$$2 \int\limits_{0}^{1} \sqrt{x} \sqrt{- x^{2} + 6 x + 3}\, dx$$
2*Integral(sqrt(x)*sqrt(3 - x^2 + 6*x), (x, 0, 1))
Numerical answer [src]
3.29286165516123
3.29286165516123

    Use the examples entering the upper and lower limits of integration.