4 / | | _________ | / 2 | \/ 25 - x dx | / 0
Integral(sqrt(25 - x^2), (x, 0, 4))
TrigSubstitutionRule(theta=_theta, func=5*sin(_theta), rewritten=25*cos(_theta)**2, substep=ConstantTimesRule(constant=25, other=cos(_theta)**2, substep=RewriteRule(rewritten=cos(2*_theta)/2 + 1/2, substep=AddRule(substeps=[ConstantTimesRule(constant=1/2, other=cos(2*_theta), substep=URule(u_var=_u, u_func=2*_theta, constant=1/2, substep=ConstantTimesRule(constant=1/2, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u), symbol=_u), context=cos(2*_theta), symbol=_theta), context=cos(2*_theta)/2, symbol=_theta), ConstantRule(constant=1/2, context=1/2, symbol=_theta)], context=cos(2*_theta)/2 + 1/2, symbol=_theta), context=cos(_theta)**2, symbol=_theta), context=25*cos(_theta)**2, symbol=_theta), restriction=(x > -5) & (x < 5), context=sqrt(25 - x**2), symbol=x)
Add the constant of integration:
The answer is:
/ | | _________ // /x\ _________ \ | / 2 ||25*asin|-| / 2 | | \/ 25 - x dx = C + |< \5/ x*\/ 25 - x | | ||---------- + -------------- for And(x > -5, x < 5)| / \\ 2 2 /
25*asin(4/5) 6 + ------------ 2
=
25*asin(4/5) 6 + ------------ 2
6 + 25*asin(4/5)/2
Use the examples entering the upper and lower limits of integration.