Mister Exam

Other calculators

Integral of sqrt(3)*cos(x)-sin(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                           
 --                           
 2                            
  /                           
 |                            
 |  /  ___                \   
 |  \\/ 3 *cos(x) - sin(x)/ dx
 |                            
/                             
0                             
0π2(sin(x)+3cos(x))dx\int\limits_{0}^{\frac{\pi}{2}} \left(- \sin{\left(x \right)} + \sqrt{3} \cos{\left(x \right)}\right)\, dx
Integral(sqrt(3)*cos(x) - sin(x), (x, 0, pi/2))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      (sin(x))dx=sin(x)dx\int \left(- \sin{\left(x \right)}\right)\, dx = - \int \sin{\left(x \right)}\, dx

      1. The integral of sine is negative cosine:

        sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

      So, the result is: cos(x)\cos{\left(x \right)}

    1. The integral of a constant times a function is the constant times the integral of the function:

      3cos(x)dx=3cos(x)dx\int \sqrt{3} \cos{\left(x \right)}\, dx = \sqrt{3} \int \cos{\left(x \right)}\, dx

      1. The integral of cosine is sine:

        cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

      So, the result is: 3sin(x)\sqrt{3} \sin{\left(x \right)}

    The result is: 3sin(x)+cos(x)\sqrt{3} \sin{\left(x \right)} + \cos{\left(x \right)}

  2. Now simplify:

    2sin(x+π6)2 \sin{\left(x + \frac{\pi}{6} \right)}

  3. Add the constant of integration:

    2sin(x+π6)+constant2 \sin{\left(x + \frac{\pi}{6} \right)}+ \mathrm{constant}


The answer is:

2sin(x+π6)+constant2 \sin{\left(x + \frac{\pi}{6} \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                      
 |                                                       
 | /  ___                \            ___                
 | \\/ 3 *cos(x) - sin(x)/ dx = C + \/ 3 *sin(x) + cos(x)
 |                                                       
/                                                        
(sin(x)+3cos(x))dx=C+3sin(x)+cos(x)\int \left(- \sin{\left(x \right)} + \sqrt{3} \cos{\left(x \right)}\right)\, dx = C + \sqrt{3} \sin{\left(x \right)} + \cos{\left(x \right)}
The graph
0.00.10.20.30.40.50.60.70.80.91.01.11.21.31.41.55-5
The answer [src]
       ___
-1 + \/ 3 
1+3-1 + \sqrt{3}
=
=
       ___
-1 + \/ 3 
1+3-1 + \sqrt{3}
-1 + sqrt(3)
Numerical answer [src]
0.732050807568877
0.732050807568877

    Use the examples entering the upper and lower limits of integration.