Integral of sqrt(3)*cos(x)-sin(x) dx
The solution
Detail solution
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin(x))dx=−∫sin(x)dx
-
The integral of sine is negative cosine:
∫sin(x)dx=−cos(x)
So, the result is: cos(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫3cos(x)dx=3∫cos(x)dx
-
The integral of cosine is sine:
∫cos(x)dx=sin(x)
So, the result is: 3sin(x)
The result is: 3sin(x)+cos(x)
-
Now simplify:
2sin(x+6π)
-
Add the constant of integration:
2sin(x+6π)+constant
The answer is:
2sin(x+6π)+constant
The answer (Indefinite)
[src]
/
|
| / ___ \ ___
| \\/ 3 *cos(x) - sin(x)/ dx = C + \/ 3 *sin(x) + cos(x)
|
/
∫(−sin(x)+3cos(x))dx=C+3sin(x)+cos(x)
The graph
Use the examples entering the upper and lower limits of integration.