Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of x/(sinx^2)^2 Integral of x/(sinx^2)^2
  • Integral of (sqrt(x)-2)^2/x Integral of (sqrt(x)-2)^2/x
  • Integral of (sin(3x))^5 Integral of (sin(3x))^5
  • Integral of e^xsin(x/2) Integral of e^xsin(x/2)
  • Identical expressions

  • (sqrt(tgx))/(cos(x))^ two
  • ( square root of (tgx)) divide by ( co sinus of e of (x)) squared
  • ( square root of (tgx)) divide by ( co sinus of e of (x)) to the power of two
  • (√(tgx))/(cos(x))^2
  • (sqrt(tgx))/(cos(x))2
  • sqrttgx/cosx2
  • (sqrt(tgx))/(cos(x))²
  • (sqrt(tgx))/(cos(x)) to the power of 2
  • sqrttgx/cosx^2
  • (sqrt(tgx)) divide by (cos(x))^2
  • (sqrt(tgx))/(cos(x))^2dx
  • Similar expressions

  • (sqrt(tgx))/(cosx)^2

Integral of (sqrt(tgx))/(cos(x))^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |    ________   
 |  \/ tan(x)    
 |  ---------- dx
 |      2        
 |   cos (x)     
 |               
/                
0                
$$\int\limits_{0}^{1} \frac{\sqrt{\tan{\left(x \right)}}}{\cos^{2}{\left(x \right)}}\, dx$$
Integral(sqrt(tan(x))/cos(x)^2, (x, 0, 1))
The answer (Indefinite) [src]
  /                      /             
 |                      |              
 |   ________           |   ________   
 | \/ tan(x)            | \/ tan(x)    
 | ---------- dx = C +  | ---------- dx
 |     2                |     2        
 |  cos (x)             |  cos (x)     
 |                      |              
/                      /               
$$\int \frac{\sqrt{\tan{\left(x \right)}}}{\cos^{2}{\left(x \right)}}\, dx = C + \int \frac{\sqrt{\tan{\left(x \right)}}}{\cos^{2}{\left(x \right)}}\, dx$$
The answer [src]
  1              
  /              
 |               
 |    ________   
 |  \/ tan(x)    
 |  ---------- dx
 |      2        
 |   cos (x)     
 |               
/                
0                
$$\int\limits_{0}^{1} \frac{\sqrt{\tan{\left(x \right)}}}{\cos^{2}{\left(x \right)}}\, dx$$
=
=
  1              
  /              
 |               
 |    ________   
 |  \/ tan(x)    
 |  ---------- dx
 |      2        
 |   cos (x)     
 |               
/                
0                
$$\int\limits_{0}^{1} \frac{\sqrt{\tan{\left(x \right)}}}{\cos^{2}{\left(x \right)}}\, dx$$
Integral(sqrt(tan(x))/cos(x)^2, (x, 0, 1))
Numerical answer [src]
1.2957231782261
1.2957231782261

    Use the examples entering the upper and lower limits of integration.