Integral of sqrt(tan(x))/(2sinxcosx) dx
The solution
The answer (Indefinite)
[src]
/
|
| ________
| \/ tan(x)
/ | ------------- dx
| | cos(x)*sin(x)
| ________ |
| \/ tan(x) /
| --------------- dx = C + -------------------
| 2*sin(x)*cos(x) 2
|
/
∫2sin(x)cos(x)tan(x)dx=C+2∫sin(x)cos(x)tan(x)dx
1
/
|
| ________
| \/ tan(x)
| ------------- dx
| cos(x)*sin(x)
|
/
0
--------------------
2
20∫1sin(x)cos(x)tan(x)dx
=
1
/
|
| ________
| \/ tan(x)
| ------------- dx
| cos(x)*sin(x)
|
/
0
--------------------
2
20∫1sin(x)cos(x)tan(x)dx
Integral(sqrt(tan(x))/(cos(x)*sin(x)), (x, 0, 1))/2
Use the examples entering the upper and lower limits of integration.