Mister Exam

Other calculators

Integral of sqrt(sqrt(x)+3) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |     ___________   
 |    /   ___        
 |  \/  \/ x  + 3  dx
 |                   
/                    
0                    
$$\int\limits_{0}^{1} \sqrt{\sqrt{x} + 3}\, dx$$
Integral(sqrt(sqrt(x) + 3), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                                                                                                                                                                      
 |                                                                                                  ___________                    ___________                   ___________                  ___________
 |    ___________                       5/2                            2                  ___  2   /       ___         ___  5/2   /       ___        ___  7/2   /       ___         ___  3   /       ___ 
 |   /   ___                        72*x                          216*x              72*\/ 3 *x *\/  3 + \/ x     12*\/ 3 *x   *\/  3 + \/ x     4*\/ 3 *x   *\/  3 + \/ x     16*\/ 3 *x *\/  3 + \/ x  
 | \/  \/ x  + 3  dx = C + -------------------------- + -------------------------- - -------------------------- - ---------------------------- + --------------------------- + --------------------------
 |                             ___  5/2        ___  2       ___  5/2        ___  2       ___  5/2        ___  2        ___  5/2        ___  2         ___  5/2        ___  2       ___  5/2        ___  2
/                          5*\/ 3 *x    + 15*\/ 3 *x    5*\/ 3 *x    + 15*\/ 3 *x    5*\/ 3 *x    + 15*\/ 3 *x     5*\/ 3 *x    + 15*\/ 3 *x      5*\/ 3 *x    + 15*\/ 3 *x    5*\/ 3 *x    + 15*\/ 3 *x 
$$\int \sqrt{\sqrt{x} + 3}\, dx = C + \frac{4 \sqrt{3} x^{\frac{7}{2}} \sqrt{\sqrt{x} + 3}}{5 \sqrt{3} x^{\frac{5}{2}} + 15 \sqrt{3} x^{2}} - \frac{12 \sqrt{3} x^{\frac{5}{2}} \sqrt{\sqrt{x} + 3}}{5 \sqrt{3} x^{\frac{5}{2}} + 15 \sqrt{3} x^{2}} + \frac{72 x^{\frac{5}{2}}}{5 \sqrt{3} x^{\frac{5}{2}} + 15 \sqrt{3} x^{2}} + \frac{16 \sqrt{3} x^{3} \sqrt{\sqrt{x} + 3}}{5 \sqrt{3} x^{\frac{5}{2}} + 15 \sqrt{3} x^{2}} - \frac{72 \sqrt{3} x^{2} \sqrt{\sqrt{x} + 3}}{5 \sqrt{3} x^{\frac{5}{2}} + 15 \sqrt{3} x^{2}} + \frac{216 x^{2}}{5 \sqrt{3} x^{\frac{5}{2}} + 15 \sqrt{3} x^{2}}$$
The graph
The answer [src]
            ___
  32   24*\/ 3 
- -- + --------
  5       5    
$$- \frac{32}{5} + \frac{24 \sqrt{3}}{5}$$
=
=
            ___
  32   24*\/ 3 
- -- + --------
  5       5    
$$- \frac{32}{5} + \frac{24 \sqrt{3}}{5}$$
-32/5 + 24*sqrt(3)/5
Numerical answer [src]
1.91384387633061
1.91384387633061

    Use the examples entering the upper and lower limits of integration.