Mister Exam

Other calculators

Integral of sqrt(sinxdx)/(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |    ________   
 |  \/ sin(x)    
 |  ---------- dx
 |      x        
 |               
/                
0                
$$\int\limits_{0}^{1} \frac{\sqrt{\sin{\left(x \right)}}}{x}\, dx$$
Integral(sqrt(sin(x))/x, (x, 0, 1))
The answer (Indefinite) [src]
  /                      /             
 |                      |              
 |   ________           |   ________   
 | \/ sin(x)            | \/ sin(x)    
 | ---------- dx = C +  | ---------- dx
 |     x                |     x        
 |                      |              
/                      /               
$$\int \frac{\sqrt{\sin{\left(x \right)}}}{x}\, dx = C + \int \frac{\sqrt{\sin{\left(x \right)}}}{x}\, dx$$
The answer [src]
  1              
  /              
 |               
 |    ________   
 |  \/ sin(x)    
 |  ---------- dx
 |      x        
 |               
/                
0                
$$\int\limits_{0}^{1} \frac{\sqrt{\sin{\left(x \right)}}}{x}\, dx$$
=
=
  1              
  /              
 |               
 |    ________   
 |  \/ sin(x)    
 |  ---------- dx
 |      x        
 |               
/                
0                
$$\int\limits_{0}^{1} \frac{\sqrt{\sin{\left(x \right)}}}{x}\, dx$$
Integral(sqrt(sin(x))/x, (x, 0, 1))
Numerical answer [src]
1.96681433825379
1.96681433825379

    Use the examples entering the upper and lower limits of integration.