Integral of sqrt(1+x^4) dx
The solution
The answer (Indefinite)
[src]
/ _
| |_ /-1/2, 1/4 | 4 pi*I\
| ________ x*Gamma(1/4)* | | | x *e |
| / 4 2 1 \ 5/4 | /
| \/ 1 + x dx = C + ----------------------------------------
| 4*Gamma(5/4)
/
$$\int \sqrt{x^{4} + 1}\, dx = C + \frac{x \Gamma\left(\frac{1}{4}\right) {{}_{2}F_{1}\left(\begin{matrix} - \frac{1}{2}, \frac{1}{4} \\ \frac{5}{4} \end{matrix}\middle| {x^{4} e^{i \pi}} \right)}}{4 \Gamma\left(\frac{5}{4}\right)}$$
_
|_ /-1/2, 1/4 | \
Gamma(1/4)* | | | -1|
2 1 \ 5/4 | /
--------------------------------
4*Gamma(5/4)
$$\frac{\Gamma\left(\frac{1}{4}\right) {{}_{2}F_{1}\left(\begin{matrix} - \frac{1}{2}, \frac{1}{4} \\ \frac{5}{4} \end{matrix}\middle| {-1} \right)}}{4 \Gamma\left(\frac{5}{4}\right)}$$
=
_
|_ /-1/2, 1/4 | \
Gamma(1/4)* | | | -1|
2 1 \ 5/4 | /
--------------------------------
4*Gamma(5/4)
$$\frac{\Gamma\left(\frac{1}{4}\right) {{}_{2}F_{1}\left(\begin{matrix} - \frac{1}{2}, \frac{1}{4} \\ \frac{5}{4} \end{matrix}\middle| {-1} \right)}}{4 \Gamma\left(\frac{5}{4}\right)}$$
gamma(1/4)*hyper((-1/2, 1/4), (5/4,), -1)/(4*gamma(5/4))
Use the examples entering the upper and lower limits of integration.