Mister Exam

Other calculators

Integral of sqrt(1+36*x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |     ___________   
 |    /         2    
 |  \/  1 + 36*x   dx
 |                   
/                    
0                    
$$\int\limits_{0}^{1} \sqrt{36 x^{2} + 1}\, dx$$
Integral(sqrt(1 + 36*x^2), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                     
 |                                           ___________
 |    ___________                           /         2 
 |   /         2           asinh(6*x)   x*\/  1 + 36*x  
 | \/  1 + 36*x   dx = C + ---------- + ----------------
 |                             12              2        
/                                                       
$$\int \sqrt{36 x^{2} + 1}\, dx = C + \frac{x \sqrt{36 x^{2} + 1}}{2} + \frac{\operatorname{asinh}{\left(6 x \right)}}{12}$$
The graph
The answer [src]
  ____           
\/ 37    asinh(6)
------ + --------
  2         12   
$$\frac{\operatorname{asinh}{\left(6 \right)}}{12} + \frac{\sqrt{37}}{2}$$
=
=
  ____           
\/ 37    asinh(6)
------ + --------
  2         12   
$$\frac{\operatorname{asinh}{\left(6 \right)}}{12} + \frac{\sqrt{37}}{2}$$
sqrt(37)/2 + asinh(6)/12
Numerical answer [src]
3.24902958620285
3.24902958620285

    Use the examples entering the upper and lower limits of integration.