Mister Exam

Other calculators

Integral of sqrt(1+1/(4(x-1))) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2                       
  /                       
 |                        
 |      _______________   
 |     /         1        
 |    /  1 + ---------  dx
 |  \/       4*(x - 1)    
 |                        
/                         
1                         
$$\int\limits_{1}^{2} \sqrt{1 + \frac{1}{4 \left(x - 1\right)}}\, dx$$
Integral(sqrt(1 + 1/(4*(x - 1))), (x, 1, 2))
The answer (Indefinite) [src]
  /                                                                          
 |                                                                           
 |     _______________               /    ________\     ________   __________
 |    /         1               asinh\2*\/ -1 + x /   \/ -1 + x *\/ -3 + 4*x 
 |   /  1 + ---------  dx = C + ------------------- + -----------------------
 | \/       4*(x - 1)                    4                       2           
 |                                                                           
/                                                                            
$$\int \sqrt{1 + \frac{1}{4 \left(x - 1\right)}}\, dx = C + \frac{\sqrt{x - 1} \sqrt{4 x - 3}}{2} + \frac{\operatorname{asinh}{\left(2 \sqrt{x - 1} \right)}}{4}$$
The graph
The answer [src]
  ___           
\/ 5    asinh(2)
----- + --------
  2        4    
$$\frac{\operatorname{asinh}{\left(2 \right)}}{4} + \frac{\sqrt{5}}{2}$$
=
=
  ___           
\/ 5    asinh(2)
----- + --------
  2        4    
$$\frac{\operatorname{asinh}{\left(2 \right)}}{4} + \frac{\sqrt{5}}{2}$$
sqrt(5)/2 + asinh(2)/4
Numerical answer [src]
1.47894285727936
1.47894285727936

    Use the examples entering the upper and lower limits of integration.