Mister Exam

Other calculators

Integral of sqrt(1+8(sin(x/2))^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                       
  /                       
 |                        
 |      _______________   
 |     /          2/x\    
 |    /  1 + 8*sin |-|  dx
 |  \/             \2/    
 |                        
/                         
0                         
$$\int\limits_{0}^{1} \sqrt{8 \sin^{2}{\left(\frac{x}{2} \right)} + 1}\, dx$$
Integral(sqrt(1 + 8*sin(x/2)^2), (x, 0, 1))
The answer [src]
  1                       
  /                       
 |                        
 |      _______________   
 |     /          2/x\    
 |    /  1 + 8*sin |-|  dx
 |  \/             \2/    
 |                        
/                         
0                         
$$\int\limits_{0}^{1} \sqrt{8 \sin^{2}{\left(\frac{x}{2} \right)} + 1}\, dx$$
=
=
  1                       
  /                       
 |                        
 |      _______________   
 |     /          2/x\    
 |    /  1 + 8*sin |-|  dx
 |  \/             \2/    
 |                        
/                         
0                         
$$\int\limits_{0}^{1} \sqrt{8 \sin^{2}{\left(\frac{x}{2} \right)} + 1}\, dx$$
Integral(sqrt(1 + 8*sin(x/2)^2), (x, 0, 1))
Numerical answer [src]
1.26058834269013
1.26058834269013

    Use the examples entering the upper and lower limits of integration.