Mister Exam

Other calculators


sqrt(1-x^2)+sqrt(18-x^2)-3*sqrt(2)

Integral of sqrt(1-x^2)+sqrt(18-x^2)-3*sqrt(2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   _____                                         
 \/ 142                                          
 -------                                         
    12                                           
    /                                            
   |                                             
   |    /   ________      _________          \   
   |    |  /      2      /       2        ___|   
   |    \\/  1 - x   + \/  18 - x   - 3*\/ 2 / dx
   |                                             
  /                                              
  0                                              
$$\int\limits_{0}^{\frac{\sqrt{142}}{12}} \left(\sqrt{1 - x^{2}} + \sqrt{18 - x^{2}} - 3 \sqrt{2}\right)\, dx$$
Integral(sqrt(1 - x^2) + sqrt(18 - x^2) - 3*sqrt(2), (x, 0, sqrt(142)/12))
Detail solution
  1. Integrate term-by-term:

      SqrtQuadraticRule(a=1, b=0, c=-1, context=sqrt(1 - x**2), symbol=x)

      SqrtQuadraticRule(a=18, b=0, c=-1, context=sqrt(18 - x**2), symbol=x)

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                                                                      
 |                                                                                  ________        _________            
 | /   ________      _________          \                          /    ___\       /      2        /       2             
 | |  /      2      /       2        ___|          asin(x)         |x*\/ 2 |   x*\/  1 - x     x*\/  18 - x           ___
 | \\/  1 - x   + \/  18 - x   - 3*\/ 2 / dx = C + ------- + 9*asin|-------| + ------------- + -------------- - 3*x*\/ 2 
 |                                                    2            \   6   /         2               2                   
/                                                                                                                        
$$\int \left(\sqrt{1 - x^{2}} + \sqrt{18 - x^{2}} - 3 \sqrt{2}\right)\, dx = C + \frac{x \sqrt{1 - x^{2}}}{2} + \frac{x \sqrt{18 - x^{2}}}{2} - 3 \sqrt{2} x + \frac{\operatorname{asin}{\left(x \right)}}{2} + 9 \operatorname{asin}{\left(\frac{\sqrt{2} x}{6} \right)}$$
The graph
The answer [src]
    /  _____\                          
    |\/ 142 |                          
asin|-------|         /  ____\     ____
    \   12  /         |\/ 71 |   \/ 71 
------------- + 9*asin|------| - ------
      2               \  36  /     4   
$$- \frac{\sqrt{71}}{4} + \frac{\operatorname{asin}{\left(\frac{\sqrt{142}}{12} \right)}}{2} + 9 \operatorname{asin}{\left(\frac{\sqrt{71}}{36} \right)}$$
=
=
    /  _____\                          
    |\/ 142 |                          
asin|-------|         /  ____\     ____
    \   12  /         |\/ 71 |   \/ 71 
------------- + 9*asin|------| - ------
      2               \  36  /     4   
$$- \frac{\sqrt{71}}{4} + \frac{\operatorname{asin}{\left(\frac{\sqrt{142}}{12} \right)}}{2} + 9 \operatorname{asin}{\left(\frac{\sqrt{71}}{36} \right)}$$
Numerical answer [src]
0.7460596474701
0.7460596474701
The graph
Integral of sqrt(1-x^2)+sqrt(18-x^2)-3*sqrt(2) dx

    Use the examples entering the upper and lower limits of integration.