Mister Exam

Other calculators

Integral of (sqrt(1-lnx))/x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |    ____________   
 |  \/ 1 - log(x)    
 |  -------------- dx
 |        x          
 |                   
/                    
0                    
011log(x)xdx\int\limits_{0}^{1} \frac{\sqrt{1 - \log{\left(x \right)}}}{x}\, dx
Integral(sqrt(1 - log(x))/x, (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=1log(x)u = 1 - \log{\left(x \right)}.

      Then let du=dxxdu = - \frac{dx}{x} and substitute du- du:

      (u)du\int \left(- \sqrt{u}\right)\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        udu=udu\int \sqrt{u}\, du = - \int \sqrt{u}\, du

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          udu=2u323\int \sqrt{u}\, du = \frac{2 u^{\frac{3}{2}}}{3}

        So, the result is: 2u323- \frac{2 u^{\frac{3}{2}}}{3}

      Now substitute uu back in:

      2(1log(x))323- \frac{2 \left(1 - \log{\left(x \right)}\right)^{\frac{3}{2}}}{3}

    Method #2

    1. Let u=1xu = \frac{1}{x}.

      Then let du=dxx2du = - \frac{dx}{x^{2}} and substitute du- du:

      (1log(1u)u)du\int \left(- \frac{\sqrt{1 - \log{\left(\frac{1}{u} \right)}}}{u}\right)\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        1log(1u)udu=1log(1u)udu\int \frac{\sqrt{1 - \log{\left(\frac{1}{u} \right)}}}{u}\, du = - \int \frac{\sqrt{1 - \log{\left(\frac{1}{u} \right)}}}{u}\, du

        1. Let u=1log(1u)u = 1 - \log{\left(\frac{1}{u} \right)}.

          Then let du=duudu = \frac{du}{u} and substitute dudu:

          udu\int \sqrt{u}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            udu=2u323\int \sqrt{u}\, du = \frac{2 u^{\frac{3}{2}}}{3}

          Now substitute uu back in:

          2(1log(1u))323\frac{2 \left(1 - \log{\left(\frac{1}{u} \right)}\right)^{\frac{3}{2}}}{3}

        So, the result is: 2(1log(1u))323- \frac{2 \left(1 - \log{\left(\frac{1}{u} \right)}\right)^{\frac{3}{2}}}{3}

      Now substitute uu back in:

      2(1log(x))323- \frac{2 \left(1 - \log{\left(x \right)}\right)^{\frac{3}{2}}}{3}

  2. Add the constant of integration:

    2(1log(x))323+constant- \frac{2 \left(1 - \log{\left(x \right)}\right)^{\frac{3}{2}}}{3}+ \mathrm{constant}


The answer is:

2(1log(x))323+constant- \frac{2 \left(1 - \log{\left(x \right)}\right)^{\frac{3}{2}}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                         
 |                                          
 |   ____________                        3/2
 | \/ 1 - log(x)           2*(1 - log(x))   
 | -------------- dx = C - -----------------
 |       x                         3        
 |                                          
/                                           
1log(x)xdx=C2(1log(x))323\int \frac{\sqrt{1 - \log{\left(x \right)}}}{x}\, dx = C - \frac{2 \left(1 - \log{\left(x \right)}\right)^{\frac{3}{2}}}{3}
The answer [src]
oo
\infty
=
=
oo
\infty
oo
Numerical answer [src]
201.185008592488
201.185008592488

    Use the examples entering the upper and lower limits of integration.