Mister Exam

Other calculators

Integral of sqrt(1−60x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 1/57               
   /                
  |                 
  |    __________   
  |  \/ 1 - 60*x  dx
  |                 
 /                  
 0                  
$$\int\limits_{0}^{\frac{1}{57}} \sqrt{1 - 60 x}\, dx$$
Integral(sqrt(1 - 60*x), (x, 0, 1/57))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                   
 |                                 3/2
 |   __________          (1 - 60*x)   
 | \/ 1 - 60*x  dx = C - -------------
 |                             90     
/                                     
$$\int \sqrt{1 - 60 x}\, dx = C - \frac{\left(1 - 60 x\right)^{\frac{3}{2}}}{90}$$
The graph
The answer [src]
         ____
1    I*\/ 19 
-- + --------
90    32490  
$$\frac{1}{90} + \frac{\sqrt{19} i}{32490}$$
=
=
         ____
1    I*\/ 19 
-- + --------
90    32490  
$$\frac{1}{90} + \frac{\sqrt{19} i}{32490}$$
1/90 + i*sqrt(19)/32490
Numerical answer [src]
(0.0111112892974559 + 0.000134377783694061j)
(0.0111112892974559 + 0.000134377783694061j)

    Use the examples entering the upper and lower limits of integration.