Mister Exam

Other calculators

Integral of sqrt(4-5x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  -1               
   /               
  |                
  |    _________   
  |  \/ 4 - 5*x  dx
  |                
 /                 
-120               
$$\int\limits_{-120}^{-1} \sqrt{4 - 5 x}\, dx$$
Integral(sqrt(4 - 5*x), (x, -120, -1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                   
 |                                 3/2
 |   _________          2*(4 - 5*x)   
 | \/ 4 - 5*x  dx = C - --------------
 |                            15      
/                                     
$$\int \sqrt{4 - 5 x}\, dx = C - \frac{2 \left(4 - 5 x\right)^{\frac{3}{2}}}{15}$$
The graph
The answer [src]
              _____
  18   2416*\/ 151 
- -- + ------------
  5         15     
$$- \frac{18}{5} + \frac{2416 \sqrt{151}}{15}$$
=
=
              _____
  18   2416*\/ 151 
- -- + ------------
  5         15     
$$- \frac{18}{5} + \frac{2416 \sqrt{151}}{15}$$
-18/5 + 2416*sqrt(151)/15
Numerical answer [src]
1975.62033583373
1975.62033583373

    Use the examples entering the upper and lower limits of integration.