Mister Exam

Other calculators


sqrt(5*x+1)

Integral of sqrt(5*x+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |    _________   
 |  \/ 5*x + 1  dx
 |                
/                 
0                 
$$\int\limits_{0}^{1} \sqrt{5 x + 1}\, dx$$
Integral(sqrt(5*x + 1), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                   
 |                                 3/2
 |   _________          2*(5*x + 1)   
 | \/ 5*x + 1  dx = C + --------------
 |                            15      
/                                     
$$\int \sqrt{5 x + 1}\, dx = C + \frac{2 \left(5 x + 1\right)^{\frac{3}{2}}}{15}$$
The graph
The answer [src]
           ___
  2    4*\/ 6 
- -- + -------
  15      5   
$$- \frac{2}{15} + \frac{4 \sqrt{6}}{5}$$
=
=
           ___
  2    4*\/ 6 
- -- + -------
  15      5   
$$- \frac{2}{15} + \frac{4 \sqrt{6}}{5}$$
-2/15 + 4*sqrt(6)/5
Numerical answer [src]
1.82625846089321
1.82625846089321
The graph
Integral of sqrt(5*x+1) dx

    Use the examples entering the upper and lower limits of integration.