1 / | | ________ | / 2 | \/ 5 - y dy | / 0
Integral(sqrt(5 - y^2), (y, 0, 1))
TrigSubstitutionRule(theta=_theta, func=sqrt(5)*sin(_theta), rewritten=5*cos(_theta)**2, substep=ConstantTimesRule(constant=5, other=cos(_theta)**2, substep=RewriteRule(rewritten=cos(2*_theta)/2 + 1/2, substep=AddRule(substeps=[ConstantTimesRule(constant=1/2, other=cos(2*_theta), substep=URule(u_var=_u, u_func=2*_theta, constant=1/2, substep=ConstantTimesRule(constant=1/2, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u), symbol=_u), context=cos(2*_theta), symbol=_theta), context=cos(2*_theta)/2, symbol=_theta), ConstantRule(constant=1/2, context=1/2, symbol=_theta)], context=cos(2*_theta)/2 + 1/2, symbol=_theta), context=cos(_theta)**2, symbol=_theta), context=5*cos(_theta)**2, symbol=_theta), restriction=(y < sqrt(5)) & (y > -sqrt(5)), context=sqrt(5 - y**2), symbol=y)
Add the constant of integration:
The answer is:
/
| // / ___\ \
| ________ || |y*\/ 5 | ________ |
| / 2 ||5*asin|-------| / 2 |
| \/ 5 - y dy = C + |< \ 5 / y*\/ 5 - y / ___ ___\|
| ||--------------- + ------------- for And\y > -\/ 5 , y < \/ 5 /|
/ || 2 2 |
\\ /
/ ___\
|\/ 5 |
5*asin|-----|
\ 5 /
1 + -------------
2
=
/ ___\
|\/ 5 |
5*asin|-----|
\ 5 /
1 + -------------
2
1 + 5*asin(sqrt(5)/5)/2
Use the examples entering the upper and lower limits of integration.